Search results
Results from the WOW.Com Content Network
Caldrini (1491) is the earliest printed example of long division, known as the Danda method in medieval Italy, [4] and it became more practical with the introduction of decimal notation for fractions by Pitiscus (1608). The specific algorithm in modern use was introduced by Henry Briggs c. 1600. [5]
Division is also not, in general, associative, meaning that when dividing multiple times, the order of division can change the result. [7] For example, (24 / 6) / 2 = 2, but 24 / (6 / 2) = 8 (where the use of parentheses indicates that the operations inside parentheses are performed before the operations outside parentheses).
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Division is the inverse of multiplication. In it, one number, known as the dividend, is split into several equal parts by another number, known as the divisor. The result of this operation is called the quotient. The symbols of division are and /.
In arithmetic, the galley method, also known as the batello or the scratch method, was the most widely used method of division in use prior to 1600. The names galea and batello refer to a boat which the outline of the work was thought to resemble. An earlier version of this method was used as early as 825 by Al-Khwarizmi.
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...
The following is known about the dimension of a finite-dimensional division algebra A over a field K: dim A = 1 if K is algebraically closed, dim A = 1, 2, 4 or 8 if K is real closed, and; If K is neither algebraically nor real closed, then there are infinitely many dimensions in which there exist division algebras over K.
If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q(x) is simply the quotient obtained from the division process; since r is known to be a root of P(x), it is known that the remainder must be zero.