Search results
Results from the WOW.Com Content Network
e * is the saturation water vapor pressure T is the absolute air temperature in kelvins T st is the steam-point (i.e. boiling point at 1 atm.) temperature (373.15 K) e * st is e * at the steam-point pressure (1 atm = 1013.25 hPa) Similarly, the correlation for the saturation water vapor pressure over ice is:
The reduced temperature of a fluid is its actual temperature, divided by its critical temperature: [1] = where the actual temperature and critical temperature are expressed in absolute temperature scales (either Kelvin or Rankine). Both the reduced temperature and the reduced pressure are often used in thermodynamical formulas like the Peng ...
The correct result would be P = 101.325 kPa, the normal (atmospheric) pressure. The deviation is −1.63 kPa or −1.61 %. The deviation is −1.63 kPa or −1.61 %. It is important to use the same absolute units for T and T c as well as for P and P c .
The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.
where temperature T is in degrees Celsius (°C) and saturation vapor pressure P is in kilopascals (kPa). According to Monteith and Unsworth, "Values of saturation vapour pressure from Tetens' formula are within 1 Pa of exact values up to 35 °C." Murray (1967) provides Tetens' equation for temperatures below 0 °C: [3]
Lee [4] developed a modified form of the Antoine equation that allows for calculating vapor pressure across the entire temperature range using the acentric factor (𝜔) of a substance. The fundamental structure of the equation is based on the van der Waals equation and builds upon the findings of Wall [ 5 ] and Gutmann et al. [ 6 ] , who ...
The concept of potential temperature applies to any stratified fluid. It is most frequently used in the atmospheric sciences and oceanography. [2] The reason that it is used in both fields is that changes in pressure can result in warmer fluid residing under colder fluid – examples being dropping air temperature with altitude and increasing water temperature with depth in very deep ocean ...
Departure functions are used to calculate real fluid extensive properties (i.e. properties which are computed as a difference between two states). A departure function gives the difference between the real state, at a finite volume or non-zero pressure and temperature, and the ideal state, usually at zero pressure or infinite volume and ...