Search results
Results from the WOW.Com Content Network
Manual image annotation is the process of manually defining regions in an image and creating a textual description of those regions. Such annotations can for instance be used to train machine learning algorithms for computer vision applications. This is a list of computer software which can be used for manual annotation of images.
Computer vision is an interdisciplinary field that deals with how computers can be made to gain high-level understanding from digital images or videos.From the perspective of engineering, it seeks to automate tasks that the human visual system can do.
The Computer Vision and Image Processing Algorithm Test and Analysis Tool, CVIP-ATAT, creates human and computer vision applications. Its primary use is to execute algorithms for processing multiple images at a time, incorporating various algorithmic and parameter variations. The program determines a suitable algorithm for pre-processing ...
Connected-component labeling is used in computer vision to detect connected regions in binary digital images, although color images and data with higher dimensionality can also be processed. [ 1 ] [ 2 ] When integrated into an image recognition system or human-computer interaction interface, connected component labeling can operate on a variety ...
Computer Vision Annotation Tool (CVAT) is an open source, web-based image and video annotation tool used for labeling data for computer vision algorithms. Originally developed by Intel , CVAT is designed for use by a professional data annotation team, with a user interface optimized for computer vision annotation tasks.
Efficient PnP (EPnP) is a method developed by Lepetit, et al. in their 2008 International Journal of Computer Vision paper [9] that solves the general problem of PnP for n ≥ 4. This method is based on the notion that each of the n points (which are called reference points) can be expressed as a weighted sum of four virtual control points ...
The Harris corner detector is a corner detection operator that is commonly used in computer vision algorithms to extract corners and infer features of an image. It was first introduced by Chris Harris and Mike Stephens in 1988 upon the improvement of Moravec's corner detector. [1]
The CIFAR-10 dataset (Canadian Institute For Advanced Research) is a collection of images that are commonly used to train machine learning and computer vision algorithms. It is one of the most widely used datasets for machine learning research. [1] [2] The CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes. [3]