Search results
Results from the WOW.Com Content Network
A method is L-stable if it is A-stable and () as , where is the stability function of the method (the stability function of a Runge–Kutta method is a rational function and thus the limit as + is the same as the limit as ).
Miller twist rule is a mathematical formula derived by American physical chemist and historian of science Donald G. Miller (1927-2012) to determine the rate of twist to apply to a given bullet to provide optimum stability using a rifled barrel. [1]
The small-gain theorem gives a sufficient condition for finite-gain stability of the feedback connection. The small gain theorem was proved by George Zames in 1966. It can be seen as a generalization of the Nyquist criterion to non-linear time-varying MIMO systems (systems with multiple inputs and multiple outputs).
The quadratic function () = is a Lyapunov function that can be used to verify stability. Theorem (discrete time version). Given any Q > 0 {\displaystyle Q>0} , there exists a unique P > 0 {\displaystyle P>0} satisfying A T P A − P + Q = 0 {\displaystyle A^{T}PA-P+Q=0} if and only if the linear system x t + 1 = A x t {\displaystyle x_{t+1}=Ax ...
The stability function of implicit Runge–Kutta methods is often analyzed using order stars. The order star for a method with stability function is defined to be the set {| | | > | |}. A method is A-stable if and only if its stability function has no poles in the left-hand plane and its order star contains no purely imaginary numbers.
Using a few basic rules, the root locus method can plot the overall shape of the path (locus) traversed by the roots as the value of varies. The plot of the root locus then gives an idea of the stability and dynamics of this feedback system for different values of . [12] [13] The rules are the following:
The Orr–Sommerfeld equation – introduced later, for the study of stability of parallel viscous flow – reduces to Rayleigh's equation when the viscosity is zero. [3] Rayleigh's equation, together with appropriate boundary conditions, most often poses an eigenvalue problem.
Hudson's equation, also known as Hudson formula, is an equation used by coastal engineers to calculate the minimum size of riprap (armourstone) required to provide satisfactory stability characteristics for rubble structures such as breakwaters under attack from storm wave conditions.