enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. L-stability - Wikipedia

    en.wikipedia.org/wiki/L-stability

    A method is L-stable if it is A-stable and () as , where is the stability function of the method (the stability function of a Runge–Kutta method is a rational function and thus the limit as + is the same as the limit as ).

  3. Miller twist rule - Wikipedia

    en.wikipedia.org/wiki/Miller_twist_rule

    Miller twist rule is a mathematical formula derived by American physical chemist and historian of science Donald G. Miller (1927-2012) to determine the rate of twist to apply to a given bullet to provide optimum stability using a rifled barrel. [1]

  4. Small-gain theorem - Wikipedia

    en.wikipedia.org/wiki/Small-gain_theorem

    The small-gain theorem gives a sufficient condition for finite-gain stability of the feedback connection. The small gain theorem was proved by George Zames in 1966. It can be seen as a generalization of the Nyquist criterion to non-linear time-varying MIMO systems (systems with multiple inputs and multiple outputs).

  5. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    The quadratic function () = is a Lyapunov function that can be used to verify stability. Theorem (discrete time version). Given any Q > 0 {\displaystyle Q>0} , there exists a unique P > 0 {\displaystyle P>0} satisfying A T P A − P + Q = 0 {\displaystyle A^{T}PA-P+Q=0} if and only if the linear system x t + 1 = A x t {\displaystyle x_{t+1}=Ax ...

  6. Stiff equation - Wikipedia

    en.wikipedia.org/wiki/Stiff_equation

    The stability function of implicit Runge–Kutta methods is often analyzed using order stars. The order star for a method with stability function is defined to be the set {| | | > | |}. A method is A-stable if and only if its stability function has no poles in the left-hand plane and its order star contains no purely imaginary numbers.

  7. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    Using a few basic rules, the root locus method can plot the overall shape of the path (locus) traversed by the roots as the value of varies. The plot of the root locus then gives an idea of the stability and dynamics of this feedback system for different values of . [12] [13] The rules are the following:

  8. Rayleigh's equation (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Rayleigh's_equation_(fluid...

    The Orr–Sommerfeld equation – introduced later, for the study of stability of parallel viscous flow – reduces to Rayleigh's equation when the viscosity is zero. [3] Rayleigh's equation, together with appropriate boundary conditions, most often poses an eigenvalue problem.

  9. Hudson's equation - Wikipedia

    en.wikipedia.org/wiki/Hudson's_equation

    Hudson's equation, also known as Hudson formula, is an equation used by coastal engineers to calculate the minimum size of riprap (armourstone) required to provide satisfactory stability characteristics for rubble structures such as breakwaters under attack from storm wave conditions.