Ad
related to: how to solve diode problems
Search results
Results from the WOW.Com Content Network
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
Shockley derives an equation for the voltage across a p-n junction in a long article published in 1949. [2] Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3]
A diode can be formed away from a MOSFET source/drain, for example, with an n+ implant in a p-substrate or with a p+ implant in an n-well. If the diode is connected to metal near the gate(s), it can protect the gate oxide. This can be done only on nets with violations, or on every gate (in general by putting such diodes in every library cell).
DAEs assume smooth characteristics for individual components; for example, a diode can be modeled/represented in a MNA with DAEs via the Shockley equation, but one cannot use an apparently simpler (more ideal) model where the sharply exponential forward and breakdown conduction regions of the curve are just straight vertical lines.
The characteristic curve (curved line), representing the current I through the diode for any given voltage across the diode V D, is an exponential curve. The load line (diagonal line) , representing the relationship between current and voltage due to Kirchhoff's voltage law applied to the resistor and voltage source, is
Various semiconductor diodes. Left: A four-diode bridge rectifier.Next to it is a 1N4148 signal diode.On the far right is a Zener diode.In most diodes, a white or black painted band identifies the cathode into which electrons will flow when the diode is conducting.
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage. [1]
Diode circuit implementing AND in active-high logic. Note: in analog implementation exact output currents will be different from +5V supply. This circuit mirrors the previous gate: the diodes are reversed so that each input connects to the cathode of a diode and all anodes are connected together to the output, which has a pull-up resistor.
Ad
related to: how to solve diode problems