enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    In mathematics, Euler's identity [note 1] (also known as Euler's equation) is the equality + = where e {\displaystyle e} is Euler's number , the base of natural logarithms , i {\displaystyle i} is the imaginary unit , which by definition satisfies i 2 = − 1 {\displaystyle i^{2}=-1} , and

  3. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  4. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    In 1840, Liouville published a proof of the fact that e 2 is irrational [10] followed by a proof that e 2 is not a root of a second-degree polynomial with rational coefficients. [11] This last fact implies that e 4 is irrational. His proofs are similar to Fourier's proof of the irrationality of e.

  5. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    The mathematical constant e can be represented in a variety of ways as a real number.Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction.

  6. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    Euler, in the eighteenth century, was probably the first person to define transcendental numbers in the modern sense. [9] Johann Heinrich Lambert conjectured that e and π were both transcendental numbers in his 1768 paper proving the number π is irrational, and proposed a tentative sketch proof that π is transcendental. [10]

  7. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case. [1] Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2]

  8. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...

  9. Pentagonal number theorem - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_number_theorem

    Jordan Bell (2005). "Euler and the pentagonal number theorem". arXiv: math.HO/0510054. On Euler's Pentagonal Theorem at MathPages; OEIS sequence A000041 (a(n) = number of partitions of n (the partition numbers)) De mirabilis proprietatibus numerorum pentagonalium at Scholarly Commons.