Search results
Results from the WOW.Com Content Network
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Download as PDF; Printable version; In other projects Wikimedia Commons; Wikiversity; ... Chemical engineering thermodynamics (11 P) Cooling technology (13 C, 158 P)
(Note: that as given by P.K.Nag, an alternative name for 'useful energy' is 'availability' or exergy, and an alternative name for 'non-useful energy' is 'unavailability', or anergy (Nag 1984, p. 156)). But as E.Sciubba and S.Ulgiati observed, the notion of transformity meant to capture the emergy invested per unit product, or useful output.
The behavior of a thermodynamic system is summarized in the laws of Thermodynamics, which concisely are: . Zeroth law of thermodynamics; If A, B, C are thermodynamic systems such that A is in thermal equilibrium with B and B is in thermal equilibrium with C, then A is in thermal equilibrium with C.
Elementary Principles in Statistical Mechanics, developed with especial reference to the rational foundation of thermodynamics. New York: Charles Scribner's Sons . Sommerfeld, Arnold ; ed: F. Bopp, J. Meixner (1952).
Work and heat are not thermodynamic properties, but rather process quantities: flows of energy across a system boundary. Systems do not contain work, but can perform work, and likewise, in formal thermodynamics, systems do not contain heat, but can transfer heat.
The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.
The basic thermodynamic potential is internal energy.In a simple fluid system, neglecting the effects of viscosity, the fundamental thermodynamic equation is written: = + where U is the internal energy, T is temperature, S is entropy, P is the hydrostatic pressure, V is the volume, is the chemical potential, and M mass.