Search results
Results from the WOW.Com Content Network
Exponentiation of a non‐zero real number can be extended to negative integers, where raising a number to the power −1 has the same effect as taking its multiplicative inverse: x −1 = 1 / x . This definition is then applied to negative integers, preserving the exponential law x a x b = x (a + b) for real numbers a and b.
A multiplication by a negative number can be seen as a change of direction of the vector of magnitude equal to the absolute value of the product of the factors. When multiplying numbers, the magnitude of the product is always just the product of the two magnitudes. The sign of the product is determined by the following rules:
Multiplication by a positive number preserves the order: For a > 0, if b > c, then ab > ac. Multiplication by a negative number reverses the order: For a < 0, if b > c, then ab < ac. The complex numbers do not have an ordering that is compatible with both addition and multiplication. [30]
In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero element. In elementary mathematics, the additive inverse is often referred to as the opposite number. [3] [4] The concept is closely related to subtraction [5] and is important in solving algebraic equations. [6]
A number is non-negative if it is greater than or equal to zero. A number is non-positive if it is less than or equal to zero. When 0 is said to be both positive and negative, [citation needed] modified phrases are used to refer to the sign of a number: A number is strictly positive if it is greater than zero. A number is strictly negative if ...
You are defining that multiplication of negative numbers follows the rules of a ring. If we had that a times b is 0 if either a or b is negative that would also be consistent with the rules for the multiplication for non-negative numbers. It is because we want the rules for negative numbers to be nicer than that that they are defined the way ...
Multiplication by negative numbers is omitted for clarity. Because the product of any two basis vectors is plus or minus another basis vector, the set {±1, ±i, ±j, ±k} forms a group under multiplication. This non-abelian group is called the quaternion group and is denoted Q 8. [26]
Remainder Test 13 (1, −3, −4, −1, 3, 4, cycle goes on.) If you are not comfortable with negative numbers, then use this sequence. (1, 10, 9, 12, 3, 4) Multiply the right most digit of the number with the left most number in the sequence shown above and the second right most digit to the second left most digit of the number in the sequence.