enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power-law fluid - Wikipedia

    en.wikipedia.org/wiki/Power-law_fluid

    A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate: = These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.

  3. Carreau fluid - Wikipedia

    en.wikipedia.org/wiki/Carreau_fluid

    Where: , , and are material coefficients: is the viscosity at zero shear rate (Pa.s), is the viscosity at infinite shear rate (Pa.s), is the characteristic time (s) and power index. The dynamics of fluid motions is an important area of physics, with many important and commercially significant applications.

  4. Power law - Wikipedia

    en.wikipedia.org/wiki/Power_law

    The distributions of a wide variety of physical, biological, and human-made phenomena approximately follow a power law over a wide range of magnitudes: these include the sizes of craters on the moon and of solar flares, [2] cloud sizes, [3] the foraging pattern of various species, [4] the sizes of activity patterns of neuronal populations, [5] the frequencies of words in most languages ...

  5. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    While no real fluid fits the definition perfectly, many common liquids and gases, such as water and air, can be assumed to be Newtonian for practical calculations under ordinary conditions. However, non-Newtonian fluids are relatively common and include oobleck (which becomes stiffer when vigorously sheared) and non-drip paint (which becomes ...

  6. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    The second-order fluid is typically considered the simplest nonlinear viscoelastic model, and typically occurs in a narrow region of materials behavior occurring at high strain amplitudes and Deborah number between Newtonian fluids and other more complicated nonlinear viscoelastic fluids. [3]

  7. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    The predictions of the first three models (hard-sphere, power-law, and Sutherland) can be simply expressed in terms of elementary functions. The Lennard–Jones model predicts a more complicated T {\displaystyle T} -dependence, but is more accurate than the other three models and is widely used in engineering practice.

  8. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    The simplest model of the dense fluid viscosity is a (truncated) power series of reduced mole density or pressure. Jossi et al. (1962) [ 14 ] presented such a model based on reduced mole density, but its most widespread form is the version proposed by Lohrenz et al. (1964) [ 15 ] which is displayed below.

  9. Computational fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Computational_fluid_dynamics

    The computer power available paced development of three-dimensional methods. Probably the first work using computers to model fluid flow, as governed by the Navier–Stokes equations, was performed at Los Alamos National Lab, in the T3 group. [5] [6] This group was led by Francis H. Harlow, who is widely considered one of the pioneers of CFD.