Search results
Results from the WOW.Com Content Network
In combinatorics, the rule of division is a counting principle. It states that there are n/d ways to do a task if it can be done using a procedure that can be carried out in n ways, and for each way w, exactly d of the n ways correspond to the way w. In a nutshell, the division rule is a common way to ignore "unimportant" differences when ...
The rule of sum is an intuitive principle stating that if there are a possible outcomes for an event (or ways to do something) and b possible outcomes for another event (or ways to do another thing), and the two events cannot both occur (or the two things can't both be done), then there are a + b total possible outcomes for the events (or total possible ways to do one of the things).
If, for example, there are two balls and three bins, then the number of ways of placing the balls is (+) = =. The table shows the six possible ways of distributing the two balls, the strings of stars and bars that represent them (with stars indicating balls and bars separating bins from one another), and the subsets that correspond to the strings.
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()
Bayesian statistics are based on a different philosophical approach for proof of inference.The mathematical formula for Bayes's theorem is: [|] = [|] [] []The formula is read as the probability of the parameter (or hypothesis =h, as used in the notation on axioms) “given” the data (or empirical observation), where the horizontal bar refers to "given".
The first occurrence of the problem of counting the number of derangements is in an early book on games of chance: Essai d'analyse sur les jeux de hazard by P. R. de Montmort (1678 – 1719) and was known as either "Montmort's problem" or by the name he gave it, "problème des rencontres." [10] The problem is also known as the hatcheck problem.
The problem of points, also called the problem of division of the stakes, is a classical problem in probability theory. One of the famous problems that motivated the beginnings of modern probability theory in the 17th century, it led Blaise Pascal to the first explicit reasoning about what today is known as an expected value .
An inadmissible rule is not preferred (except for reasons of simplicity or computational efficiency), since by definition there is some other rule that will achieve equal or lower risk for all. But just because a rule δ {\displaystyle \delta \,\!} is admissible does not mean it is a good rule to use.