enow.com Web Search

  1. Ads

    related to: multiplication zero properties of addition

Search results

  1. Results from the WOW.Com Content Network
  2. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    In algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words, =, = = This property is also known as the rule of zero product, the null factor law, the multiplication property of zero, the nonexistence of nontrivial zero divisors, or one of the two zero-factor properties. [1]

  3. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a. Next we will prove the base case b = 1, that 1 commutes with everything, i.e. for all natural numbers a , we have a + 1 = 1 + a .

  4. Identity element - Wikipedia

    en.wikipedia.org/wiki/Identity_element

    An identity with respect to addition is called an additive identity (often denoted as 0) and an identity with respect to multiplication is called a multiplicative identity (often denoted as 1). [3] These need not be ordinary addition and multiplication—as the underlying operation could be rather arbitrary.

  5. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Multiplication by a positive number preserves the order: For a > 0, if b > c, then ab > ac. Multiplication by a negative number reverses the order: For a < 0, if b > c, then ab < ac. The complex numbers do not have an ordering that is compatible with both addition and multiplication. [30]

  6. Additive identity - Wikipedia

    en.wikipedia.org/wiki/Additive_identity

    In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element x in the set, yields x.One of the most familiar additive identities is the number 0 from elementary mathematics, but additive identities occur in other mathematical structures where addition is defined, such as in groups and rings.

  7. Ordinal arithmetic - Wikipedia

    en.wikipedia.org/wiki/Ordinal_arithmetic

    When the right addend β = 0, ordinary addition gives α + 0 = α for any α. For β > 0, the value of α + β is the smallest ordinal strictly greater than the sum of α and δ for all δ < β. Writing the successor and limit ordinals cases separately: α + 0 = α; α + S(β) = S(α + β), where S denotes the successor function.

  8. Addition - Wikipedia

    en.wikipedia.org/wiki/Addition

    The fact that addition is commutative is known as the "commutative law of addition" or "commutative property of addition". Some other binary operations are commutative, such as multiplication, but many others, such as subtraction and division, are not.

  9. Scalar multiplication - Wikipedia

    en.wikipedia.org/wiki/Scalar_multiplication

    Multiplying by 0 gives the zero vector: 0v = 0; Multiplying by −1 gives the additive inverse: (−1)v = −v. Here, + is addition either in the field or in the vector space, as appropriate; and 0 is the additive identity in either. Juxtaposition indicates either scalar multiplication or the multiplication operation in the field.

  1. Ads

    related to: multiplication zero properties of addition