Ads
related to: multiplication zero properties of addition- Teachers Try it Free
Get 30 days access for free.
No credit card or commitment needed
- K-8 Math Videos & Lessons
Used in 20,000 Schools
Loved by Students & Teachers
- Grades K-2 Math Lessons
Get instant access to hours of fun
standards-based K-2 videos & more.
- K-8 Standards Alignment
Videos & lessons cover most
of the standards for every state
- Teachers Try it Free
Search results
Results from the WOW.Com Content Network
In algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words, =, = = This property is also known as the rule of zero product, the null factor law, the multiplication property of zero, the nonexistence of nontrivial zero divisors, or one of the two zero-factor properties. [1]
The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a. Next we will prove the base case b = 1, that 1 commutes with everything, i.e. for all natural numbers a , we have a + 1 = 1 + a .
An identity with respect to addition is called an additive identity (often denoted as 0) and an identity with respect to multiplication is called a multiplicative identity (often denoted as 1). [3] These need not be ordinary addition and multiplication—as the underlying operation could be rather arbitrary.
Multiplication by a positive number preserves the order: For a > 0, if b > c, then ab > ac. Multiplication by a negative number reverses the order: For a < 0, if b > c, then ab < ac. The complex numbers do not have an ordering that is compatible with both addition and multiplication. [30]
In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element x in the set, yields x.One of the most familiar additive identities is the number 0 from elementary mathematics, but additive identities occur in other mathematical structures where addition is defined, such as in groups and rings.
When the right addend β = 0, ordinary addition gives α + 0 = α for any α. For β > 0, the value of α + β is the smallest ordinal strictly greater than the sum of α and δ for all δ < β. Writing the successor and limit ordinals cases separately: α + 0 = α; α + S(β) = S(α + β), where S denotes the successor function.
The fact that addition is commutative is known as the "commutative law of addition" or "commutative property of addition". Some other binary operations are commutative, such as multiplication, but many others, such as subtraction and division, are not.
Multiplying by 0 gives the zero vector: 0v = 0; Multiplying by −1 gives the additive inverse: (−1)v = −v. Here, + is addition either in the field or in the vector space, as appropriate; and 0 is the additive identity in either. Juxtaposition indicates either scalar multiplication or the multiplication operation in the field.
Ads
related to: multiplication zero properties of addition