Search results
Results from the WOW.Com Content Network
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
For pipe sizes of NPS 14 inch (DN 350) and greater the NPS size is the actual diameter in inches and the DN size is equal to NPS times 25 (not 25.4) rounded to a convenient multiple of 50. For example, NPS 14 has an OD of 14 inches or 355.60 millimetres, and is equivalent to DN 350.
For a fully filled duct or pipe whose cross-section is a convex regular polygon, the hydraulic diameter is equivalent to the diameter of a circle inscribed within the wetted perimeter. This can be seen as follows: The N {\displaystyle N} -sided regular polygon is a union of N {\displaystyle N} triangles, each of height D / 2 {\displaystyle D/2 ...
A reducer reduces the pipe size from a larger to a smaller bore (inner diameter). Alternatively, reducer may refer to any fitting which causes a change in pipe diameter. [15] This change may be intended to meet hydraulic flow requirements of the system or adapt to existing piping of a different size. The reduction length is usually equal to the ...
Standard dimension ratio (SDR) is a method of rating a pipe's durability against pressure. The standard dimension ratio describes the correlation between the pipe dimension and the thickness of the pipe wall. [1] Common nominations are SDR11, SDR17, SDR26 and SDR35. Pipes with a lower SDR can withstand higher pressures.
Nominal Pipe Size (NPS) is a North American set of standard sizes for pipes used for high or low pressures and temperatures. [1] " Nominal" refers to pipe in non-specific terms and identifies the diameter of the hole with a non-dimensional number (for example – 2-inch nominal steel pipe" consists of many varieties of steel pipe with the only criterion being a 2.375-inch (60.3 mm) outside ...
The internal pressure exerts an axial force equal to pressure times the internal cross section of the pipe. F =P[πd^2/4]. If outer diameter is used for calculating approximate metal cross-section as Pressure well as pipe cross-section, the axial stress can often be approximated as follows : S =Pd /(4t)
Barlow's formula (called "Kesselformel" [1] in German) relates the internal pressure that a pipe [2] can withstand to its dimensions and the strength of its material. This approximate formula is named after Peter Barlow , an English mathematician .