Ad
related to: binomial expansion for negative exponentseducation.com has been visited by 100K+ users in the past month
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Printable Workbooks
Search results
Results from the WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
The first results concerning binomial series for other than positive-integer exponents were given by Sir Isaac Newton in the study of areas enclosed under certain curves. John Wallis built upon this work by considering expressions of the form y = (1 − x 2 ) m where m is a fraction.
The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power. In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem.
In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.
The benefit of this approximation is that is converted from an exponent to a multiplicative factor. This can greatly simplify mathematical expressions (as in the example below) and is a common tool in physics. [1] The approximation can be proven several ways, and is closely related to the binomial theorem.
Thus many identities on binomial coefficients carry over to the falling and rising factorials. The rising and falling factorials are well defined in any unital ring, and therefore can be taken to be, for example, a complex number, including negative integers, or a polynomial with complex coefficients, or any complex-valued function.
In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper, (Kummer 1852).
If n is a negative integer, is defined only if x has a multiplicative inverse. [35] In this case, the inverse of x is denoted x −1, and x n is defined as (). Exponentiation with integer exponents obeys the following laws, for x and y in the algebraic structure, and m and n integers:
Ad
related to: binomial expansion for negative exponentseducation.com has been visited by 100K+ users in the past month