enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    As originally proposed by Google, [16] each CoT prompt included a few Q&A examples. This made it a few-shot prompting technique. However, according to a researchers at Google and the University of Tokyo, simply appending the words "Let's think step-by-step", [ 25 ] has also proven effective, which makes CoT a zero-shot prompting technique.

  3. Neural machine translation - Wikipedia

    en.wikipedia.org/wiki/Neural_machine_translation

    A generative LLM can be prompted in a zero-shot fashion by just asking it to translate a text into another language without giving any further examples in the prompt. Or one can include one or several example translations in the prompt before asking to translate the text in question. This is then called one-shot or few-shot learning, respectively.

  4. Few-shot learning - Wikipedia

    en.wikipedia.org/wiki/Few-shot_learning

    Few-shot learning and one-shot learning may refer to: Few-shot learning, a form of prompt engineering in generative AI; One-shot learning (computer vision)

  5. Wikipedia : Wikipedia Signpost/2024-08-14/Recent research

    en.wikipedia.org/wiki/Wikipedia:Wikipedia...

    In an example presented by the authors, for the given topic sustainability of Large Language Models, this might lead to the existing articles sustainable development and corporate social responsibility. The section headings of those related articles are then passed to an LLM with the request to generate a set of "perspectives", with the prompt

  6. GPT-3 - Wikipedia

    en.wikipedia.org/wiki/GPT-3

    GPT-3 is capable of performing zero-shot and few-shot learning (including one-shot). [ 1 ] In June 2022, Almira Osmanovic Thunström wrote that GPT-3 was the primary author on an article on itself, that they had submitted it for publication, [ 24 ] and that it had been pre-published while waiting for completion of its review.

  7. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation.LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.

  8. Language model - Wikipedia

    en.wikipedia.org/wiki/Language_model

    A language model is a probabilistic model of a natural language. [1] In 1980, the first significant statistical language model was proposed, and during the decade IBM performed ‘Shannon-style’ experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.

  9. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    This is achieved by prompting the text encoder with class names and selecting the class whose embedding is closest to the image embedding. For example, to classify an image, they compared the embedding of the image with the embedding of the text "A photo of a {class}.", and the {class} that results in the highest dot product is outputted.