enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Few-shot learning - Wikipedia

    en.wikipedia.org/wiki/Few-shot_learning

    Download as PDF; Printable version; In other projects ... move to sidebar hide. Few-shot learning and one-shot learning may refer to: Few-shot learning, a form of ...

  3. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.

  4. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.

  5. David W. Johnson (scholar) - Wikipedia

    en.wikipedia.org/wiki/David_W._Johnson_(scholar)

    David W. Johnson (born 1940 in Muncie, Indiana) is a social psychologist whose research has focused on four overlapping areas: [1] cooperative, competitive, and individualistic efforts; constructive controversy; conflict resolution and peer mediation and experiential learning to teach interpersonal and small group skills. [2]

  6. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    Few-shot learning [ edit ] A prompt may include a few examples for a model to learn from, such as asking the model to complete " maison → house, chat → cat, chien →" (the expected response being dog ), [ 33 ] an approach called few-shot learning .

  7. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    The design has its origins from pre-training contextual representations, including semi-supervised sequence learning, [23] generative pre-training, ELMo, [24] and ULMFit. [25] Unlike previous models, BERT is a deeply bidirectional, unsupervised language representation, pre-trained using only a plain text corpus .

  8. Language model - Wikipedia

    en.wikipedia.org/wiki/Language_model

    A language model is a probabilistic model of a natural language. [1] In 1980, the first significant statistical language model was proposed, and during the decade IBM performed ‘Shannon-style’ experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.

  9. Vicuna LLM - Wikipedia

    en.wikipedia.org/wiki/Vicuna_LLM

    Vicuna LLM is an omnibus Large Language Model used in AI research. [1] Its methodology is to enable the public at large to contrast and compare the accuracy of LLMs "in the wild" (an example of citizen science ) and to vote on their output; a question-and-answer chat format is used.