Search results
Results from the WOW.Com Content Network
The relationship between thermal conductance and resistance is analogous to that between electrical conductance and resistance in the domain of electronics. Thermal insulance (R-value) is a measure of a material's resistance to the heat current. It quantifies how effectively a material can resist the transfer of heat through conduction ...
Heat is transported by phonons and by free electrons in solids. For pure metals, however, the electronic contributions dominate in the thermal conductivity. [citation needed] In impure metals, the electron mean free path is reduced by collisions with impurities, and the phonon contribution may be comparable with the electronic contribution.
A heat current or thermal current is a kinetic exchange rate between molecules, relative to the material in which the kinesis occurs. It is defined as the net rate of flow of heat . The SI unit of heat current is the watt , which is the flow of heat across a surface at the rate of one Joule per second.
Thermal conduction is the diffusion of thermal energy (heat) within one material or between materials in contact. The higher temperature object has molecules with more kinetic energy ; collisions between molecules distributes this kinetic energy until an object has the same kinetic energy throughout.
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
A temperature drop is observed at the interface between the two surfaces in contact. This phenomenon is said to be a result of a thermal contact resistance existing between the contacting surfaces. Thermal contact resistance is defined as the ratio between this temperature drop and the average heat flow across the interface. [1]
The two modes of energy transfer, as heat and by electric current, can be distinguished when there are three distinct bodies and a distinct arrangement of surroundings. But in the case of continuous variation in the media, heat transfer and thermodynamic work cannot be uniquely distinguished. This is more complicated than the often considered ...
Conduction heat flux q k for ideal gas is derived with the gas kinetic theory or the Boltzmann transport equations, and the thermal conductivity is =, -, where u f 2 1/2 is the RMS (root mean square) thermal velocity (3k B T/m from the MB distribution function, m: atomic mass) and τ f-f is the relaxation time (or intercollision time period ...