Search results
Results from the WOW.Com Content Network
The modern method is simply to create a set of conditions from the above Kirchhoff laws (junctions and head-loss criteria). Then, use a Root-finding algorithm to find Q values that satisfy all the equations. The literal friction loss equations use a term called Q 2, but we want to preserve any changes in
The steps involved are same as the SIMPLE algorithm and the algorithm is iterative in nature. p*, u*, v* are guessed Pressure, X-direction velocity and Y-direction velocity respectively, p', u', v' are the correction terms respectively and p, u, v are the correct fields respectively; Φ is the property for which we are solving and d terms are involved with the under relaxation factor.
In fluid mechanics, inertance is a measure of the pressure difference in a fluid required to cause a unit change in the rate of change of volumetric flow-rate with time. The base SI units of inertance are kg m −4 or Pa s 2 m −3 and the usual symbol is I. The inertance of a tube is given by: = where
In mathematics, the discrete Poisson equation is the finite difference analog of the Poisson equation. In it, the discrete Laplace operator takes the place of the Laplace operator . The discrete Poisson equation is frequently used in numerical analysis as a stand-in for the continuous Poisson equation, although it is also studied in its own ...
It is an extension of the SIMPLE algorithm used in computational fluid dynamics to solve the Navier-Stokes equations. PISO is a pressure-velocity calculation procedure for the Navier-Stokes equations developed originally for non-iterative computation of unsteady compressible flow, but it has been adapted successfully to steady-state problems.
In other words, () is an -dimensional vector that contains the run of data starting with (). Define the distance between two vectors x ( i ) {\displaystyle \mathbf {x} (i)} and x ( j ) {\displaystyle \mathbf {x} (j)} as the maximum of the distances between their respective components, given by
Typically, the algorithm consists of two stages. In the first stage, an intermediate velocity that does not satisfy the incompressibility constraint is computed at each time step. In the second, the pressure is used to project the intermediate velocity onto a space of divergence-free velocity field to get the next update of velocity and pressure.
VLE of the mixture of chloroform and methanol plus NRTL fit and extrapolation to different pressures. The non-random two-liquid model [1] (abbreviated NRTL model) is an activity coefficient model introduced by Renon and Prausnitz in 1968 that correlates the activity coefficients of a compound with its mole fractions in the liquid phase concerned.