enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Projection method (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Projection_method_(fluid...

    It was originally introduced by Alexandre Chorin in 1967 [1] [2] as an efficient means of solving the incompressible Navier-Stokes equations. The key advantage of the projection method is that the computations of the velocity and the pressure fields are decoupled.

  3. PISO algorithm - Wikipedia

    en.wikipedia.org/wiki/PISO_algorithm

    It is an extension of the SIMPLE algorithm used in computational fluid dynamics to solve the Navier-Stokes equations. PISO is a pressure-velocity calculation procedure for the Navier-Stokes equations developed originally for non-iterative computation of unsteady compressible flow, but it has been adapted successfully to steady-state problems.

  4. Upwind differencing scheme for convection - Wikipedia

    en.wikipedia.org/wiki/Upwind_differencing_scheme...

    Solution in the central difference scheme fails to converge for Peclet number greater than 2 which can be overcome by using an upwind scheme to give a reasonable result. [1]: Fig. 5.5, 5.13 Therefore the upwind differencing scheme is applicable for Pe > 2 for positive flow and Pe < −2 for negative flow. For other values of Pe, this scheme ...

  5. Shell balance - Wikipedia

    en.wikipedia.org/wiki/Shell_Balance

    Shell balances can be used in many situations. For example, flow in a pipe, the flow of multiple fluids around each other, or flow due to pressure difference. Although terms in the shell balance and boundary conditions will change, the basic set up and process is the same.

  6. Discrete Poisson equation - Wikipedia

    en.wikipedia.org/wiki/Discrete_Poisson_equation

    In mathematics, the discrete Poisson equation is the finite difference analog of the Poisson equation. In it, the discrete Laplace operator takes the place of the Laplace operator . The discrete Poisson equation is frequently used in numerical analysis as a stand-in for the continuous Poisson equation, although it is also studied in its own ...

  7. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.

  8. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    The modern method is simply to create a set of conditions from the above Kirchhoff laws (junctions and head-loss criteria). Then, use a Root-finding algorithm to find Q values that satisfy all the equations. The literal friction loss equations use a term called Q 2, but we want to preserve any changes in

  9. Vertical pressure variation - Wikipedia

    en.wikipedia.org/wiki/Vertical_pressure_variation

    A relatively simple version [1] of the vertical fluid pressure variation is simply that the pressure difference between two elevations is the product of elevation change, gravity, and density. The equation is as follows: =, where P is pressure, ρ is density, g is acceleration of gravity, and; h is height.