Search results
Results from the WOW.Com Content Network
In the early universe, it is thought that matter and antimatter were equally represented, and the disappearance of antimatter requires an asymmetry in physical laws called CP (charge–parity) symmetry violation, which can be obtained from the Standard Model, [51] but at this time the apparent asymmetry of matter and antimatter in the visible ...
In this model, matter creates defects in spacetime which generate curvature and all the effects of general relativity. [3] The existence of a shortest length at the Planck level has interesting consequences for quantum physics at ultrahigh energies. For example, the uncertainty relation will be modified. [4]
Strange matter: A type of quark matter that may exist inside some neutron stars close to the Tolman–Oppenheimer–Volkoff limit (approximately 2–3 solar masses). May be stable at lower energy states once formed. Quark matter: Hypothetical phases of matter whose degrees of freedom include quarks and gluons Color-glass condensate
Dark matter is a hypothetical kind of matter that is invisible to the entire electromagnetic spectrum, but which accounts for most of the matter in the universe. The existence and properties of dark matter are inferred from its gravitational effects on visible matter, radiation, and the large-scale structure of the universe.
Modified Newtonian dynamics (MOND) is a theory that proposes a modification of Newton's second law to account for observed properties of galaxies.Its primary motivation is to explain galaxy rotation curves without invoking dark matter, and is one of the most well-known theories of this class.
Before Newton’s law of gravity, there were many theories explaining gravity. Philoshophers made observations about things falling down − and developed theories why they do – as early as Aristotle who thought that rocks fall to the ground because seeking the ground was an essential part of their nature. [6]
Such comparatively simple universes can be described by simple solutions of Einstein's equations. The current cosmological models of the universe are obtained by combining these simple solutions to general relativity with theories describing the properties of the universe's matter content, namely thermodynamics, nuclear-and particle physics.
The matter power spectrum describes the density contrast of the universe (the difference between the local density and the mean density) as a function of scale. It is the Fourier transform of the matter correlation function. On large scales, gravity competes with cosmic expansion, and structures grow according to linear theory. In this regime ...