Search results
Results from the WOW.Com Content Network
Phage invasion may play a role in biofilm life cycles, lysing bacteria and releasing their eDNA, which strengthens biofilm structures and can be taken up by neighboring bacteria in transformation. [171] Biofilm destruction caused by the E. coli phage Rac and the P. aeruginosa prophage Pf4 causes detachment of cells from the biofilm. [171]
Microalgal biofilms consist of 90% EPS and 10% algal cells. Algal EPS has similar components to the bacterial one; it is made up of proteins, phospholipids, polysaccharides, nucleic acids, humic substances, uronic acids and some functional groups, such as phosphoric, carboxylic, hydroxyl and amino groups.
Outside the cell wall, many gram-positive bacteria have an S-layer of "tiled" proteins. The S-layer assists attachment and biofilm formation. Outside the S-layer, there is often a capsule of polysaccharides. The capsule helps the bacterium evade host phagocytosis. In laboratory culture, the S-layer and capsule are often lost by reductive ...
Outside the cell wall, many Gram-positive bacteria have an S-layer of "tiled" proteins. The S-layer assists attachment and biofilm formation. Outside the S-layer, there is often a capsule of polysaccharides. The capsule helps the bacterium evade host phagocytosis. In laboratory culture, the S-layer and capsule are often lost by reductive ...
The outer membranes of a bacterium can contain a huge number of proteins. In E. Coli for example there are around 500,000 in the membrane. [5] Bacterial outer membrane proteins typically have a unique beta barrel structure that spans the membrane. The beta barrels fold to expose a hydrophobic surface before their insertion into the outer membrane.
Instead, bacteria with the ability to form attachments to the acquired pellicle, which contains certain salivary proteins, on the surface of the teeth, begin the establishment of the biofilm. Upon dental plaque maturation, in which the microbial community grows and diversifies, the plaque is covered in an interbacterial matrix.
Biofilms form as a way of survival for bacteria in aqueous situations. Ozone targets extracellular polysaccharides, a group of bacterial colonies on a surface, and cleaves them. The ozone cuts through the skeleton of the biofilm at a rapid pace thus dissolving it back to harmless microscopic fragments.
The increased cell length can protect bacteria from protozoan predation and neutrophil phagocytosis by making ingestion of cells more difficult. [1] [3] [4] [5] Filamentation is also thought to protect bacteria from antibiotics, and is associated with other aspects of bacterial virulence such as biofilm formation. [6] [7]