Search results
Results from the WOW.Com Content Network
After above step, the process for creating ethanol is as follows: [9] 3. Separation of sugars from other plant material. 4. Microbial fermentation of the sugar solution to create alcohol. 5. Distillation to purify the products and produce roughly 9% pure alcohol 6. Further purification to bring the ethanol purity to roughly 99.5%
Glycogenesis is the process of glycogen synthesis or the process of converting glucose into glycogen in which glucose molecules are added to chains of glycogen for storage. This process is activated during rest periods following the Cori cycle , in the liver , and also activated by insulin in response to high glucose levels .
Glycoside hydrolases can also be classified as exo or endo acting, dependent upon whether they act at the (usually non-reducing) end or in the middle, respectively, of an oligo/polysaccharide chain. Glycoside hydrolases may also be classified by sequence or structure-based methods.
α-Glucosidase hydrolyzes terminal non-reducing (1→4)-linked α-glucose residues to release a single α-glucose molecule. [ 10 ] α-Glucosidase is a carbohydrate-hydrolase that releases α-glucose as opposed to β-glucose. β-Glucose residues can be released by glucoamylase, a functionally similar enzyme.
β-Glucuronidases are members of the glycosidase family of enzymes that catalyze breakdown of complex carbohydrates. [2] Human β-glucuronidase is a type of glucuronidase (a member of glycosidase Family 2) that catalyzes hydrolysis of β-D-glucuronic acid residues from the non-reducing end of mucopolysaccharides (also referred to as glycosaminoglycans) such as heparan sulfate.
Blood sugar regulation is the process by which the levels of blood sugar, the common name for glucose dissolved in blood plasma, are maintained by the body within a narrow range. The regulation of glucose levels through Homeostasis. This tight regulation is referred to as glucose homeostasis.
The non-reducing sugar then acts as a glycosyl acceptor as a protecting group that is easily lost in solution reveals a free hydroxyl group. This reacts with a donor that was disarmed, forming the oxocarbenium ion at a slower rate, producing the desired trisaccharide.
Working from the non-reducing end, β-amylase catalyzes the hydrolysis of the second α-1,4 glycosidic bond, cleaving off two glucose units at a time. During the ripening of fruit , β-amylase breaks starch into maltose, resulting in the sweet flavor of ripe fruit.