Search results
Results from the WOW.Com Content Network
All four internal angles of a square are equal (each being 360°/4 = 90°, a right angle). The central angle of a square is equal to 90° (360°/4). The external angle of a square is equal to 90°. The diagonals of a square are equal and bisect each other, meeting at 90°. The diagonal of a square bisects its internal angle, forming adjacent ...
A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8] A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite vertices. [9]
Every rhombus is a kite, and any quadrilateral that is both a kite and parallelogram is a rhombus. A rhombus is a tangential quadrilateral. [10] That is, it has an inscribed circle that is tangent to all four sides. A rhombus. Each angle marked with a black dot is a right angle.
In Euclidean plane geometry, a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square.
Rhombus – A parallelogram with four sides of equal length. Any parallelogram that is neither a rectangle nor a rhombus was traditionally called a rhomboid but this term is not used in modern mathematics. [1] Square – A parallelogram with four sides of equal length and angles of equal size (right angles).
Square (astrological aspect), an aspect of 90 degrees; Square (dessert), a dessert bar with the texture of a firm cake but softer than a cookie; Square (sailing), to adjust the position of the yardarms on a square-rigged vessel to a 90-degree angle with the keel; Square (slang), several meanings
Quadrilaterals that are both orthodiagonal and equidiagonal, and in which the diagonals are at least as long as all of the quadrilateral's sides, have the maximum area for their diameter among all quadrilaterals, solving the n = 4 case of the biggest little polygon problem. The square is one such quadrilateral, but there are infinitely many others.
Van Aubel's theorem states that the two line segments between the centers of opposite squares are of equal lengths and are at right angles to one another. Another way of saying the same thing is that the center points of the four squares form the vertices of an equidiagonal orthodiagonal quadrilateral.