Search results
Results from the WOW.Com Content Network
the electronvolt (eV), a unit of energy, used to express mass in units of eV/c 2 through mass–energy equivalence; the dalton (Da), equal to 1/12 of the mass of a free carbon-12 atom, approximately 1.66 × 10 −27 kg. [note 2] Outside the SI system, other units of mass include: the slug (sl), an Imperial unit of mass (about 14.6 kg)
"The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J s, which is equal to kg m 2 s −1, where the metre and the second are defined in terms of c and ∆ν Cs." [1] The mass of one litre of water at the temperature ...
However, the names of all SI mass units are based on gram, rather than on kilogram; thus 10 3 kg is a megagram (10 6 g), not a *kilokilogram. The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 10 3 kg. The unit is in common use for masses above about 10 3 kg and is often used with SI prefixes.
The kilogram is the only coherent SI unit whose name and symbol include a prefix. For historical reasons, the names and symbols for multiples and sub-multiples of the unit of mass are formed as if the gram were the base unit. Prefix names and symbols are attached to the unit name gram and the unit symbol g respectively.
The slug is a derived unit of mass in a weight-based system of measures, most notably within the British Imperial measurement system and the United States customary measures system. Systems of measure either define mass and derive a force unit or define a base force and derive a mass unit [1] (cf. poundal, a
Because mass and weight are separate quantities, they have different units of measure. In the International System of Units (SI), the kilogram is the basic unit of mass, and the newton is the basic unit of force. The non-SI kilogram-force is also a unit of force typically used in the measure of weight.
The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J⋅s, which is equal to kg⋅m 2 ⋅s −1, where the metre and the second are defined in terms of c and Δν Cs. —
A derived unit is used for expressing any other quantity, and is a product of powers of base units. For example, in the modern metric system, length has the unit metre and time has the unit second, and speed has the derived unit metre per second. [5]: 15 Density, or mass per unit volume, has the unit kilogram per cubic metre. [5]: 434