Search results
Results from the WOW.Com Content Network
(S)-(+)-lactic acid (left) and (R)-(–)-lactic acid (right) are nonsuperposable mirror images of each other.. In chemistry, an enantiomer (/ɪˈnænti.əmər, ɛ-, -oʊ-/ [1] ih-NAN-tee-ə-mər), also known as an optical isomer, [2] antipode, [3] or optical antipode, [4] is one of a pair of molecular entities which are mirror images of each other and non-superposable.
A living system usually deals with two enantiomers of the same compound in drastically different ways. In biology, homochirality is a common property of amino acids and carbohydrates. The chiral protein-making amino acids, which are translated through the ribosome from genetic coding, occur in the L form. However, D-amino acids are also found ...
Two enantiomers of a generic amino acid that are chiral (S)-Alanine (left) and (R)-alanine (right) in zwitterionic form at neutral pH. In chemistry, a molecule or ion is called chiral (/ ˈ k aɪ r əl /) if it cannot be superposed on its mirror image by any combination of rotations, translations, and some conformational changes.
These include meso compounds, cis–trans isomers, E-Z isomers, and non-enantiomeric optical isomers. Diastereomers seldom have the same physical properties. In the example shown below, the meso form of tartaric acid forms a diastereomeric pair with both levo- and dextro-tartaric acids, which form an enantiomeric pair.
In 1848, Louis Pasteur became the first scientist to discover chirality and enantiomers while he was working with tartaric acid. During the experiments, he noticed that there were two crystal structures produced but these structures looked to be non-superimposable mirror images of each other; this observation of isomers that were non-superimposable mirror images became known as enantiomers.
Reasoning from the macroscopic scale down to the molecular, he reckoned that the molecules had to have non-superimposable mirror images. [2] A sample with only a single enantiomer is an enantiomerically pure or enantiopure compound. [3]
Chiral inversion is the process of conversion of one enantiomer of a chiral molecule to its mirror-image version with no other change in the molecule. [1] [2] [3] [4]Chiral inversion happens depending on various factors (viz. biological-, solvent-, light-, temperature- induced, etc.) and the energy barrier energy barrier associated with the stereogenic element present in the chiral molecule. 2 ...
Tartaric acid in pen sketch Computer-rendered image of right-handed molecule Racemic acid crystals drawn as if seen through an optical microscope. Racemic acid is an old name for an optically inactive or racemic form of tartaric acid. It is an equal mixture of two mirror-image isomers (enantiomers), optically active in opposing directions ...