Search results
Results from the WOW.Com Content Network
Mercury's sidereal day is about two-thirds of its orbital period, so by the prograde formula its solar day lasts for two revolutions around the Sun – three times as long as its sidereal day. Venus rotates retrograde with a sidereal day lasting about 243.0 Earth days, or about 1.08 times its orbital period of 224.7 Earth days; hence by the ...
The orbit of Venus has an inclination of 3.39° relative to that of the Earth, and so passes under (or over) the Sun when viewed from the Earth. [1] A transit occurs when Venus reaches conjunction with the Sun whilst also passing through the Earth's orbital plane, and passes directly across the face of the Sun. [citation needed] [note 1 ...
The distance between Venus and Earth varies from about 42 million km (at inferior conjunction) to about 258 million km (at superior conjunction). The average period between successive conjunctions of one type is 584 days – one synodic period of Venus. Five synodic periods of Venus is almost exactly 13 sidereal Venus years and 8 Earth years ...
The orbit of Venus is 224.7 Earth days (7.4 avg. Earth months [30.4 days]). The phases of Venus result from the planet's orbit around the Sun inside the Earth's orbit giving the telescopic observer a sequence of progressive lighting similar in appearance to the Moon's phases. It presents a full image when it is on the opposite side of the Sun.
The planetary hours are an ancient system in which one of the seven classical planets is given rulership over each day and various parts of the day. Developed in Hellenistic astrology, it has possible roots in older Babylonian astrology, and it is the origin of the names of the days of the week as used in English and numerous other languages.
A synodic day (or synodic rotation period or solar day) is the period for a celestial object to rotate once in relation to the star it is orbiting, and is the basis of solar time. The synodic day is distinguished from the sidereal day, which is one complete rotation in relation to distant stars [1] and is the basis of sidereal time.
Known affectionately to scientists as the "boring billion," there was a seemingly endless period in the world's history when the length of a day stayed put. The time when a day on Earth was just ...
The Earth's motion does not determine this value for other planets because an Earth observer is not orbited by the moons in question. For example, Deimos's synodic period is 1.2648 days, 0.18% longer than Deimos's sidereal period of 1.2624 d. [citation needed]