Search results
Results from the WOW.Com Content Network
The haploid genotype (haplotype) is a genotype that considers the singular chromosomes rather than the pairs of chromosomes. It can be all the chromosomes from one of the parents or a minor part of a chromosome, for example a sequence of 9000 base pairs or a small set of alleles.
The set of chromosomes in a cell makes up its genome; the human genome has approximately 3 billion base pairs of DNA arranged into 46 chromosomes. [96] The information carried by DNA is held in the sequence of pieces of DNA called genes .
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...
Note that the pair of sex chromosomes may or may not be homologous, depending on the sex of the individual. For instance, females contain XX, thus have a homologous pair of sex chromosomes. This means that females have 23 pairs of homologous chromosomes in total (i.e., 22 pairs of non-sex chromosomes (autosomes), 1 pair of sex chromosomes).
Secondary structure is the set of interactions between bases, i.e., which parts of strands are bound to each other. In DNA double helix, the two strands of DNA are held together by hydrogen bonds. The nucleotides on one strand base pairs with the nucleotide on the other strand. The secondary structure is responsible for the shape that the ...
A pair of sister chromatids is called a dyad. A full set of sister chromatids is created during the synthesis phase of interphase, when all the chromosomes in a cell are replicated. The two sister chromatids are separated from each other into two different cells during mitosis or during the second division of meiosis.
The structure of the DNA double helix (type B-DNA). The atoms in the structure are color-coded by element and the detailed structures of two base pairs are shown in the bottom right. DNA exists as a double-stranded structure, with both strands coiled together to form the characteristic double helix.
The structure, visible by microscopy, is called a bivalent. [5] Resolution of the DNA recombination intermediate into a crossover exchanges DNA segments between the two homologous chromosomes at a site called a chiasma (plural: chiasmata). This physical strand exchange and the cohesion between the sister chromatids along each chromosome ensure ...