Search results
Results from the WOW.Com Content Network
The phase plane method refers to graphically determining the existence of limit cycles in the solutions of the differential equation. The solutions to the differential equation are a family of functions. Graphically, this can be plotted in the phase plane like a two-dimensional vector field.
The slope field of =, with the blue, red, and turquoise lines being +, , and , respectively. A slope field (also called a direction field [ 1 ] ) is a graphical representation of the solutions to a first-order differential equation [ 2 ] of a scalar function.
A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .
Vector field : Vector field plots (or quiver plots) show the direction and the strength of a vector associated with a 2D or 3D points. They are typically used to show the strength of the gradient over the plane or a surface area. Violin plot : Violin plots are a method of plotting numeric data.
The advantage of this method is the extension to more general settings such as infinite-dimensional systems - partial differential equation or delay differential equations. J. Hale presents generalizations to almost periodic vector-fields. [4]
Texture-based methods, like LIC, avoid these problems since they depict the entire vector field at point-like (pixel) resolution. [1] Compared to other integration-based techniques that compute field lines of the input vector field, LIC has the advantage that all structural features of the vector field are displayed, without the need to adapt ...
This equation says that the vector tangent to the curve at any point x(t) along the curve is precisely the vector F(x(t)), and so the curve x(t) is tangent at each point to the vector field F. If a given vector field is Lipschitz continuous, then the Picard–Lindelöf theorem implies that there exists a unique flow for small time.
This is an illustration of the closest vector problem (basis vectors in blue, external vector in green, closest vector in red). In CVP, a basis of a vector space V and a metric M (often L 2) are given for a lattice L, as well as a vector v in V but not necessarily in L. It is desired to find the vector in L closest to v (as measured by M).