enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  3. SqueezeNet - Wikipedia

    en.wikipedia.org/wiki/SqueezeNet

    SqueezeNet is a deep neural network for image classification released in 2016. SqueezeNet was developed by researchers at DeepScale, University of California, Berkeley, and Stanford University. In designing SqueezeNet, the authors' goal was to create a smaller neural network with fewer parameters while achieving competitive accuracy.

  4. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    A deep CNN of (Dan Cireșan et al., 2011) at IDSIA was 60 times faster than an equivalent CPU implementation. [12] Between May 15, 2011, and September 10, 2012, their CNN won four image competitions and achieved SOTA for multiple image databases. [13] [14] [15] According to the AlexNet paper, [1] Cireșan's earlier net is "somewhat similar."

  5. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    Segmentation of a 512 × 512 image takes less than a second on a modern (2015) GPU using the U-Net architecture. [1] [3] [4] [5] The U-Net architecture has also been employed in diffusion models for iterative image denoising. [6] This technology underlies many modern image generation models, such as DALL-E, Midjourney, and Stable Diffusion.

  6. Caffe (software) - Wikipedia

    en.wikipedia.org/wiki/Caffe_(software)

    Caffe supports many different types of deep learning architectures geared towards image classification and image segmentation. It supports CNN, RCNN, LSTM and fully-connected neural network designs. [8] Caffe supports GPU- and CPU-based acceleration computational kernel libraries such as Nvidia cuDNN and Intel MKL. [9] [10]

  7. Region Based Convolutional Neural Networks - Wikipedia

    en.wikipedia.org/wiki/Region_Based_Convolutional...

    R-CNN has been extended to perform other computer vision tasks, such as: tracking objects from a drone-mounted camera, [3] locating text in an image, [4] and enabling object detection in Google Lens. [5] Mask R-CNN is also one of seven tasks in the MLPerf Training Benchmark, which is a competition to speed up the training of neural networks. [6]

  8. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    Inception [1] is a family of convolutional neural network (CNN) for computer vision, introduced by researchers at Google in 2014 as GoogLeNet (later renamed Inception v1).). The series was historically important as an early CNN that separates the stem (data ingest), body (data processing), and head (prediction), an architectural design that persists in all modern

  9. Capsule neural network - Wikipedia

    en.wikipedia.org/wiki/Capsule_neural_network

    The network is trained by minimizing the euclidean distance between the image and the output of a CNN that reconstructs the input from the output of the terminal capsules. [1] The network is discriminatively trained, using iterative routing-by-agreement. [1] The activity vectors of all but the correct parent are masked. [1]