Search results
Results from the WOW.Com Content Network
Animation of Gaussian elimination. Red row eliminates the following rows, green rows change their order. In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients.
Gaussian elimination has O(n 3) complexity, but introduces division, which results in round-off errors when implemented using floating point numbers. Round-off errors can be avoided if all the numbers are kept as integer fractions instead of floating point. But then the size of each element grows in size exponentially with the number of rows.
In linear algebra, reduction refers to applying simple rules to a series of equations or matrices to change them into a simpler form. In the case of matrices, the process involves manipulating either the rows or the columns of the matrix and so is usually referred to as row-reduction or column-reduction, respectively.
A matrix is in reduced row echelon form if it is in row echelon form, with the additional property that the first nonzero entry of each row is equal to and is the only nonzero entry of its column. The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it.
A row can be replaced by the sum of that row and a multiple of another row. R i + k R j → R i , where i ≠ j {\displaystyle R_{i}+kR_{j}\rightarrow R_{i},{\mbox{where }}i\neq j} If E is an elementary matrix, as described below, to apply the elementary row operation to a matrix A , one multiplies A by the elementary matrix on the left, EA .
It can be proved that two matrices are similar if and only if one can transform one into the other by elementary row and column operations. For a matrix representing a linear map from W to V, the row operations correspond to change of bases in V and the column operations correspond to change of bases in W.
Consider the system of equations + + = + + = + + = The coefficient matrix is = [], and the augmented matrix is (|) = []. Since both of these have the same rank, namely 2, there exists at least one solution; and since their rank is less than the number of unknowns, the latter being 3, there are an infinite number of solutions.
The reduced Gröbner basis of the unit is formed by the single polynomial 1. In the case of polynomials in a single variable, there is a unique admissible monomial ordering, the ordering by the degree. The minimal Gröbner bases are the singletons consisting of a single polynomial. The reduced Gröbner bases are the monic polynomials.