Search results
Results from the WOW.Com Content Network
Optical units are dimensionless units of length used in optical microscopy. They are used to express distances in terms of the numerical aperture of the system and the wavelength of the light used for observation. Using these units allows comparison of the properties of different microscopes. [1]
The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century.
In both cases the numerical aperture of the objective is 1.49 and the refractive index of the medium 1.52. The wavelength of the emitted light is assumed to be 600 nm and, in case of the confocal microscope, that of the excitation light 500 nm with circular polarization. A section is cut to visualize the internal intensity distribution.
The speed of light in IAU is the defined value c 0 = 299 792 458 m/s of the SI units. In terms of this speed, the old definition of the astronomical unit of length had the accepted value: [3] 1 au = c 0 τ A = (149 597 870 700 ± 3) m, where τ A is the transit time of light across the astronomical
The pupil function or aperture function describes how a light wave is affected upon transmission through an optical imaging system such as a camera, microscope, or the human eye. More specifically, it is a complex function of the position in the pupil [ 1 ] or aperture (often an iris ) that indicates the relative change in amplitude and phase ...
In interferometric microscopy, the image of a micro-object is synthesized numerically as a coherent combination of partial images with registered amplitude and phase. [ 1 ] [ 2 ] For registration of partial images, a conventional holographic set-up is used with a reference wave, as is usual in optical holography .
Light field microscopy (LFM) is a scanning-free 3-dimensional (3D) microscopic imaging method based on the theory of light field.This technique allows sub-second (~10 Hz) large volumetric imaging ([~0.1 to 1 mm] 3) with ~1 μm spatial resolution in the condition of weak scattering and semi-transparence, which has never been achieved by other methods.
Memorial in Jena, Germany to Ernst Karl Abbe, who approximated the diffraction limit of a microscope as = , where d is the resolvable feature size, λ is the wavelength of light, n is the index of refraction of the medium being imaged in, and θ (depicted as α in the inscription) is the half-angle subtended by the optical objective lens (representing the numerical aperture).