Search results
Results from the WOW.Com Content Network
It is common to place additional requirements on topological manifolds. In particular, many authors define them to be paracompact [3] or second-countable. [2] In the remainder of this article a manifold will mean a topological manifold. An n-manifold will mean a topological manifold such that every point has a neighborhood homeomorphic to R n.
Just as there are various types of manifolds, there are various types of maps of manifolds. PDIFF serves to relate DIFF and PL, and it is equivalent to PL.. In geometric topology, the basic types of maps correspond to various categories of manifolds: DIFF for smooth functions between differentiable manifolds, PL for piecewise linear functions between piecewise linear manifolds, and TOP for ...
This is a list of particular manifolds, by Wikipedia page. See also list of geometric topology topics . For categorical listings see Category:Manifolds and its subcategories.
Familiar examples of two-dimensional manifolds include the sphere, torus, and Klein bottle; this book concentrates on three-dimensional manifolds, and on two-dimensional surfaces within them. A particular focus is a Heegaard splitting, a two-dimensional surface that partitions a 3-manifold into two handlebodies. It aims to present the main ...
After a line, a circle is the simplest example of a topological manifold. Topology ignores bending, so a small piece of a circle is treated the same as a small piece of a line. Considering, for instance, the top part of the unit circle, x 2 + y 2 = 1, where the y-coordinate is positive (indicated by the yellow arc in Figure 1).
In all dimensions, the fundamental group of a manifold is a very important invariant, and determines much of the structure; in dimensions 1, 2 and 3, the possible fundamental groups are restricted, while in dimension 4 and above every finitely presented group is the fundamental group of a manifold (note that it is sufficient to show this for 4- and 5-dimensional manifolds, and then to take ...
A lens space is an example of a topological space, considered in mathematics. The term often refers to a specific class of 3-manifolds, but in general can be defined for higher dimensions. In the 3-manifold case, a lens space can be visualized as the result of gluing two solid tori together by a homeomorphism of their boundaries.
A smooth structure on a manifold is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold is an atlas for such that each transition function is a smooth map, and two smooth atlases for are smoothly equivalent provided their union is again a smooth atlas for .