Search results
Results from the WOW.Com Content Network
Human genetics is the study of inheritance as it occurs in human beings.Human genetics encompasses a variety of overlapping fields including: classical genetics, cytogenetics, molecular genetics, biochemical genetics, genomics, population genetics, developmental genetics, clinical genetics, and genetic counseling.
Heredity, also called inheritance or biological inheritance, is the passing on of traits from parents to their offspring; either through asexual reproduction or sexual reproduction, the offspring cells or organisms acquire the genetic information of their parents.
Autosomal dominant A 50/50 chance of inheritance. Sickle-cell disease is inherited in the autosomal recessive pattern. When both parents have sickle-cell trait (carrier), a child has a 25% chance of sickle-cell disease (red icon), 25% do not carry any sickle-cell alleles (blue icon), and 50% have the heterozygous (carrier) condition. [1]
Mendelian traits behave according to the model of monogenic or simple gene inheritance in which one gene corresponds to one trait. Discrete traits (as opposed to continuously varying traits such as height) with simple Mendelian inheritance patterns are relatively rare in nature, and many of the clearest examples in humans cause disorders.
The following is a list of genetic disorders and if known, type of mutation and for the chromosome involved. Although the parlance "disease-causing gene" is common, it is the occurrence of an abnormality in the parents that causes the impairment to develop within the child. There are over 6,000 known genetic disorders in humans.
In a dominant-recessive inheritance, an average of 25% are homozygous with the dominant trait, 50% are heterozygous showing the dominant trait in the phenotype (genetic carriers), 25% are homozygous with the recessive trait and therefore express the recessive trait in the phenotype. The genotypic ratio is 1: 2 : 1, and the phenotypic ratio is 3: 1.
Some traits are inherited through genes, which is the reason why tall and thin people tend to have tall and thin children. Other traits come from interactions between genes and the environment, so a child who inherited the tendency of being tall will still be short if poorly nourished. The way our genes and environment interact to produce a ...
•List of human protein-coding genes page 2 covers genes EPHA1–MTMR3 •List of human protein-coding genes page 3 covers genes MTMR4–SLC17A7 •List of human protein-coding genes page 4 covers genes SLC17A8–ZZZ3 NB: Each list page contains 5000 human protein-coding genes, sorted alphanumerically by the HGNC-approved gene symbol.