enow.com Web Search

  1. Ads

    related to: decomposing 2 digit numbers

Search results

  1. Results from the WOW.Com Content Network
  2. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The standard procedure for multiplication of two n-digit numbers requires a number of elementary operations proportional to , or () in big-O notation. Andrey Kolmogorov conjectured that the traditional algorithm was asymptotically optimal , meaning that any algorithm for that task would require Ω ( n 2 ) {\displaystyle \Omega (n^{2 ...

  3. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, 15 is a composite number because 15 = 3 · 5 , but 7 is a prime number because it cannot be decomposed in this way.

  4. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    If one has a two-digit number, take it and add the two numbers together and put that sum in the middle, and one can get the answer. For example: 24 x 11 = 264 because 2 + 4 = 6 and the 6 is placed in between the 2 and the 4. Second example: 87 x 11 = 957 because 8 + 7 = 15 so the 5 goes in between the 8 and the 7 and the 1 is carried to the 8.

  5. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    A related concept is that of a largely composite number, a positive integer that has at least as many divisors as all smaller positive integers. The name can be somewhat misleading, as the first two highly composite numbers (1 and 2) are not actually composite numbers; however, all further terms are. Ramanujan wrote a paper on highly composite ...

  6. Quater-imaginary base - Wikipedia

    en.wikipedia.org/wiki/Quater-imaginary_base

    The rightmost digit is 2−1 = 1. The second digit from the right would become −1, so add 4 to give 3 and then carry +1 two places to the left. The third digit from the right is 1−0 = 1. Then the leftmost digit is 1−1 plus 1 from the carry, giving 1. This gives a final answer of .

  7. 6174 - Wikipedia

    en.wikipedia.org/wiki/6174

    All other four-digit numbers eventually reach 6174 if leading zeros are used to keep the number of digits at 4. For numbers with three identical digits and a fourth digit that is one higher or lower (such as 2111), it is essential to treat 3-digit numbers with a leading zero; for example: 2111 – 1112 = 0999; 9990 – 999 = 8991; 9981 – 1899 ...

  8. Kaprekar's routine - Wikipedia

    en.wikipedia.org/wiki/Kaprekar's_routine

    In number theory, Kaprekar's routine is an iterative algorithm named after its inventor, Indian mathematician D. R. Kaprekar. Each iteration starts with a number, sorts the digits into descending and ascending order, and calculates the difference between the two new numbers. As an example, starting with the number 8991 in base 10: 9981 – 1899 ...

  9. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    For example, in the method addition with carries, the two numbers are written one above the other. Starting from the rightmost digit, each pair of digits is added together. The rightmost digit of the sum is written below them. If the sum is a two-digit number then the leftmost digit, called the "carry", is added to the next pair of digits to ...

  1. Ads

    related to: decomposing 2 digit numbers