enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Experimental testing of time dilation - Wikipedia

    en.wikipedia.org/wiki/Experimental_testing_of...

    As it is moving in S, we have γ>1, therefore its proper time is shorter with respect to time T. (For comparison's sake, another muon at rest on Earth can be considered, called muon-S. Therefore, its decay time in S is shorter than that of muon-S′, while it is longer in S′.) In S, muon-S′ has a longer decay time than muon-S.

  3. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    Gravitational time dilation in the form of gravitational redshift has also been confirmed by the Pound–Rebka experiment and observations of the spectra of the white dwarf Sirius B. Gravitational time dilation has been measured in experiments with time signals sent to and from the Viking 1 Mars lander. [15] [16]

  4. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    In such experiments, the "clock" is the time taken by processes leading to muon decay, and these processes take place in the moving muon at its own "clock rate", which is much slower than the laboratory clock. This is routinely taken into account in particle physics, and many dedicated measurements have been performed.

  5. Gravity Probe B - Wikipedia

    en.wikipedia.org/wiki/Gravity_Probe_B

    Gravity Probe B (GP-B) was a satellite-based experiment to test two unverified predictions of general relativity: the geodetic effect and frame-dragging. This was to be accomplished by measuring, very precisely, tiny changes in the direction of spin of four gyroscopes contained in an Earth-orbiting satellite at 650 km (400 mi) of altitude ...

  6. Time in physics - Wikipedia

    en.wikipedia.org/wiki/Time_in_physics

    In physics, time is defined by its measurement: time is what a clock reads. [1] In classical, non-relativistic physics, it is a scalar quantity (often denoted by the symbol t {\displaystyle t} ) and, like length , mass , and charge , is usually described as a fundamental quantity .

  7. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    The g-force acting on an object under acceleration can be much greater than 1 g, for example, the dragster pictured at top right can exert a horizontal g-force of 5.3 when accelerating. The g-force acting on an object under acceleration may be downwards, for example when cresting a sharp hill on a roller coaster.

  8. Gravimetry - Wikipedia

    en.wikipedia.org/wiki/Gravimetry

    Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2. The value of the g n is defined as approximately equal to the acceleration due to gravity at the Earth's surface, although the actual acceleration varies slightly ...

  9. Problem of time - Wikipedia

    en.wikipedia.org/wiki/Problem_of_time

    [1] [2] This problem raises the question of what time really is in a physical sense and whether it is truly a real, distinct phenomenon. It also involves the related question of why time seems to flow in a single direction, despite the fact that no known physical laws at the microscopic level seem to require a single direction. [3]