enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear magnetic resonance decoupling - Wikipedia

    en.wikipedia.org/wiki/Nuclear_Magnetic_Resonance...

    Nuclear magnetic resonance decoupling (NMR decoupling for short) is a special method used in nuclear magnetic resonance (NMR) spectroscopy where a sample to be analyzed is irradiated at a certain frequency or frequency range to eliminate or partially the effect of coupling between certain nuclei. NMR coupling refers to the effect of nuclei on ...

  3. Solid-state nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Solid-state_nuclear...

    Solid-state 900 MHz (21.1 T [1]) NMR spectrometer at the Canadian National Ultrahigh-field NMR Facility for Solids. Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopy technique used to characterize atomic-level structure and dynamics in solid materials. ssNMR spectra are broader due to nuclear spin interactions which can be categorized as dipolar coupling, chemical shielding ...

  4. Stopped-flow - Wikipedia

    en.wikipedia.org/wiki/Stopped-flow

    The stopped-flow method is a development of the continuous-flow method used by Hamilton Hartridge and Francis Roughton [7] to study the binding of O 2 to hemoglobin. In the absence of any stopping system the reaction mixture passed to a long tube past an observation system (consisting in 1923 of a simple colorimeter) to waste.

  5. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  6. Nuclear Overhauser effect - Wikipedia

    en.wikipedia.org/wiki/Nuclear_Overhauser_effect

    In the heteronuclear case where I ≠ S, the maximum NOE is given by 1\2 (γ S /γ I), which, when observing heteronuclei under conditions of broadband proton decoupling, can produce major sensitivity improvements. The most important example in organic chemistry is observation of 13 C while decoupling 1 H, which also saturates the 1 J

  7. Time-resolved spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Time-resolved_spectroscopy

    In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques.Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material.

  8. J-coupling - Wikipedia

    en.wikipedia.org/wiki/J-coupling

    In nuclear chemistry and nuclear physics, J-couplings (also called spin-spin coupling or indirect dipole–dipole coupling) are mediated through chemical bonds connecting two spins. It is an indirect interaction between two nuclear spins that arises from hyperfine interactions between the nuclei and local electrons. [ 1 ]

  9. Coupled cluster - Wikipedia

    en.wikipedia.org/wiki/Coupled_cluster

    Coupled cluster (CC) is a numerical technique used for describing many-body systems.Its most common use is as one of several post-Hartree–Fock ab initio quantum chemistry methods in the field of computational chemistry, but it is also used in nuclear physics.