enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Kepler defined inertia only in terms of resistance to movement, once again based on the axiomatic assumption that rest was a natural state which did not need explanation. It was not until the later work of Galileo and Newton unified rest and motion in one principle that the term "inertia" could be applied to those concepts as it is today. [24]

  3. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same trajectories and landing at identical times.

  4. Introduction to general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_general...

    The equivalence between inertia and gravity cannot explain tidal effects – it cannot explain variations in the gravitational field. [10] For that, a theory is needed which describes the way that matter (such as the large mass of the Earth) affects the inertial environment around it.

  5. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force and 10 29 times weaker than the weak interaction.

  6. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    The resulting Newton–Cartan theory is a geometric formulation of Newtonian gravity using only covariant concepts, i.e. a description which is valid in any desired coordinate system. [30] In this geometric description, tidal effects —the relative acceleration of bodies in free fall—are related to the derivative of the connection, showing ...

  7. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T 2) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s 2). In its original concept, gravity was a force between ...

  8. Findings by dark energy researchers back Einstein's ... - AOL

    www.aol.com/news/findings-dark-energy...

    Gravity is one of the universe's fundamental forces. Einstein's theory linked space, time and gravity. It holds that concentrations of mass and energy curve the structure of space-time ...

  9. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Before Newton’s law of gravity, there were many theories explaining gravity. Philoshophers made observations about things falling down − and developed theories why they do – as early as Aristotle who thought that rocks fall to the ground because seeking the ground was an essential part of their nature. [6]