Search results
Results from the WOW.Com Content Network
The Doomsday rule, Doomsday algorithm or Doomsday method is an algorithm of determination of the day of the week for a given date. It provides a perpetual calendar because the Gregorian calendar moves in cycles of 400 years. The algorithm for mental calculation was devised by John Conway in 1973, [1] [2] drawing inspiration from Lewis Carroll's ...
March 0 is used in Doomsday algorithm calculations. [23] March 2 was celebrated as February 30 by Lin-Manuel Miranda and Weird Al Yankovic for the release date of Yankovic's "The Hamilton Polka". [24] In November 2010 it was discovered that a Hanshin Tigers wall calendar incorrectly included the date November 31. Fans who had bought the ...
The basic approach of nearly all of the methods to calculate the day of the week begins by starting from an "anchor date": a known pair (such as 1 January 1800 as a Wednesday), determining the number of days between the known day and the day that you are trying to determine, and using arithmetic modulo 7 to find a new numerical day of the week.
The "doomsday" concept in the doomsday algorithm is mathematically related to the Dominical letter. Because the letter of a date equals the dominical letter of a year (DL) plus the day of the week (DW), and the letter for the doomsday is C except for the portion of leap years before February 29 in which it is D, we have:
The day of the week for these days are related to the "Doomsday" algorithm, which calculates the weekday that the last day of February falls on. The dates listed in the table are all one day after the Doomsday, except that in January and February of leap years the dates themselves are Doomsdays.
Note: In this algorithm January and February are counted as months 13 and 14 of the previous year. E.g. if it is 2 February 2010 (02/02/2010 in DD/MM/YYYY), the algorithm counts the date as the second day of the fourteenth month of 2009 (02/14/2009 in DD/MM/YYYY format) For an ISO week date Day-of-Week d (1 = Monday to 7 = Sunday), use
A major complicating factor in constructing a perpetual calendar algorithm is the peculiar and variable length of February, which was at one time the last month of the year, leaving the first 11 months March through January with a five-month repeating pattern: 31, 30, 31, 30, 31, ..., so that the offset from March of the starting day of the ...
It should only contain pages that are Calendar algorithms or lists of Calendar algorithms, as well as subcategories containing those things (themselves set categories). Topics about Calendar algorithms in general should be placed in relevant topic categories .