Search results
Results from the WOW.Com Content Network
[19] [18] Han (2013) summarizes comprehensive research conducted at the University of Kansas, including static and cyclic plate loading tests, full-scale moving wheel tests, and numerical modeling on geocell-reinforced base courses with different infill materials and discusses the main research findings from these studies regarding permanent ...
Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue.
The term fatigue refers to the effect of cyclic or intermittent loads. Cyclic loading due to either oscillating mechanical stress or to alternate heating and cooling is more detrimental than static loading. Under cyclic load, cracks initiate at localized sites within the part and these extend in size during cycling.
Corrosion fatigue is fatigue in a corrosive environment. It is the mechanical degradation of a material under the joint action of corrosion and cyclic loading. Nearly all engineering structures experience some form of alternating stress, and are exposed to harmful environments during their service life.
High cycle fatigue strength (about 10 4 to 10 8 cycles) can be described by stress-based parameters. A load-controlled servo-hydraulic test rig is commonly used in these tests, with frequencies of around 20–50 Hz. Other sorts of machines—like resonant magnetic machines—can also be used, to achieve frequencies up to 250 Hz.
Cyclic Corrosion Testing (CCT) has evolved in recent years, largely within the automotive industry, as a way of accelerating real-world corrosion failures, under laboratory controlled conditions. As the name implies, the test comprises different climates which are cycled automatically so the samples under test undergo the same sort of changing ...
Low cycle fatigue (LCF) has two fundamental characteristics: plastic deformation in each cycle; and low cycle phenomenon, in which the materials have finite endurance for this type of load. The term cycle refers to repeated applications of stress that lead to eventual fatigue and failure; low-cycle pertains to a long period between applications.
Part 2: Classification of environments; Part 3: Design considerations; Part 4: Types of surface and surface preparation; Part 5: Protective paint systems; Part 6: Laboratory performance test methods and associated assessment criteria; Part 7: Execution and supervision of paint work; Part 8: Development of specifications for new work and maintenance