Search results
Results from the WOW.Com Content Network
Synthetic-aperture radar (SAR) is a form of radar that is used to create two-dimensional images or three-dimensional reconstructions of objects, such as landscapes. [1] SAR uses the motion of the radar antenna over a target region to provide finer spatial resolution than conventional stationary beam-scanning radars.
Furthermore, aperture thinning reduces the overall volume and mass of the antenna system. A disadvantage is the reduction of radiometric sensitivity (or increase in rms noise) of the image due to a decrease in signal-to-noise ratio for each measurement compared to a filled aperture. Pixel averaging is required for good radiometric sensitivity.
Synthetic aperture radar (SAR) allow for an angular resolution beyond real beamwidth by moving the aperture over the target, and adding the echoes coherently. Architecture: The field of view is scanned with a highly directive frequency-orthogonal (slotted waveguide), spatially orthogonal (switched beamforming networks), or time-orthogonal beams.
Synthetic-aperture radar (SAR) is a form of radar which moves a real aperture or antenna through a series of positions along the objects to provide distinctive long-term coherent-signal variations. This can be used to obtain higher resolution.
The history of synthetic-aperture radar begins in 1951, with the invention of the technology by mathematician Carl A. Wiley, and its development in the following decade. Initially developed for military use, the technology has since been applied in the field of planetary science .
The associated resolution loss from sharing the synthetic aperture among different swaths is compensated by collecting radar echoes with multiple displaced azimuth apertures. A possible drawback of multichannel ScanSAR or TOPS approaches is the rather high Doppler centroid, [ 9 ] which is one of the most important parameters need to be ...
AN/AWG-14 is the final member of the lineage of this radar family, and it is a fully digitized upgrade of the AWG series [11] incorporating AN/APQ-120. The open architecture and modular design enable AWG-14 to accommodate different radars, such as AN/APG-65, AN/APG-66, AN/APG-76, Elta EL/M-2011/2021 and EL/M-2032.
The Advanced Synthetic Aperture Radar System-2 (ASARS-2) is the radar system mounted on some variants of the Lockheed U-2 reconnaissance aircraft.. The ASARS-2 radar was originally developed in the early 1980s by Hughes Aircraft, which was acquired by Raytheon in the late 1990s.