Search results
Results from the WOW.Com Content Network
The color temperature scale describes only the color of light emitted by a light source, which may actually be at a different (and often much lower) temperature. [1] [2] Color temperature has applications in lighting, [3] photography, [4] videography, [5] publishing, [6] manufacturing, [7] astrophysics, [8] and other fields.
Additionally, there is a relationship between correlated color temperature and apparent brightness of a source. [15] From these findings, it is evident that color rendering index, in place of correlated color temperature, may be a more appropriate metric for determining as to whether or not a certain source is considered pleasing.
Blacksmiths work iron when it is hot enough to emit plainly visible thermal radiation. The color of a star is determined by its temperature, according to Wien's law. In the constellation of Orion, one can compare Betelgeuse (T ≈ 3800 K, upper left), Rigel (T = 12100 K, bottom right), Bellatrix (T = 22000 K, upper right), and Mintaka (T = 31800 K, rightmost of the 3 "belt stars" in the middle).
Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write: =where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m 2 = kg·m −1 ·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m 2); and λ is the wavelength (SI unit: meter, m).
In astronomy, the color index is a simple numerical expression that determines the color of an object, which in the case of a star gives its temperature. The lower the color index, the more blue (or hotter) the object is. Conversely, the larger the color index, the more red (or cooler) the object is.
Brightness temperature or radiance temperature is a measure of the intensity of electromagnetic energy coming from a source. [1] In particular, it is the temperature at which a black body would have to be in order to duplicate the observed intensity of a grey body object at a frequency ν {\displaystyle \nu } . [ 2 ]
The Sun is found on the main sequence at luminosity 1 (absolute magnitude 4.8) and B−V color index 0.66 (temperature 5780 K, spectral type G2V). The Hertzsprung–Russell diagram (abbreviated as H–R diagram , HR diagram or HRD ) is a scatter plot of stars showing the relationship between the stars' absolute magnitudes or luminosities and ...
The temperature Stefan obtained was a median value of previous ones, 1950 °C and the absolute thermodynamic one 2200 K. As 2.57 4 = 43.5, it follows from the law that the temperature of the Sun is 2.57 times greater than the temperature of the lamella, so Stefan got a value of 5430 °C or 5700 K. This was the first sensible value for the ...