Search results
Results from the WOW.Com Content Network
28.2% (sunlight energy collected by chlorophyll) → 68% is lost in conversion of ATP and NADPH to d-glucose, leaving; 9% (collected as sugar) → 35–40% of sugar is recycled/consumed by the leaf in dark and photo-respiration, leaving; 5.4% net leaf efficiency. Many plants lose much of the remaining energy on growing roots.
Schematic of photosynthesis in plants. The carbohydrates produced are stored in or used by the plant. Composite image showing the global distribution of photosynthesis, including both oceanic phytoplankton and terrestrial vegetation. Dark red and blue-green indicate regions of high photosynthetic activity in the ocean and on land, respectively.
The reaction center contains two pigments that serve to collect and transfer the energy from photon absorption: BChl and Bph. BChl roughly resembles the chlorophyll molecule found in green plants, but, due to minor structural differences, its peak absorption wavelength is shifted into the infrared, with wavelengths as long as 1000 nm. Bph has ...
The energy, but not the electron itself, may be passed onto another molecule; this is called resonance energy transfer. If an electron of the special pair in the reaction center becomes excited, it cannot transfer this energy to another pigment using resonance energy transfer. Under normal circumstances, the electron would return to the ground ...
A diagram of energy transfer between trophic levels. Primary production occurs in autotrophic organisms of an ecosystem. Photoautotrophs such as vascular plants and algae convert energy from the sun into energy stored as carbon compounds. Photosynthesis is carried out in the chlorophyll of green plants. The energy converted through ...
At the reaction center, the energy will be trapped and transferred to produce a high energy molecule. [2] The main function of PSII is to efficiently split water into oxygen molecules and protons. PSII will provide a steady stream of electrons to PSI, which will boost these in energy and transfer them to NADP + and H + to make NADPH. The ...
The Calvin cycle uses the chemical energy of ATP and the reducing power of NADPH from the light-dependent reactions to produce sugars for the plant to use. These substrates are used in a series of reduction-oxidation ( redox ) reactions to produce sugars in a step-wise process; there is no direct reaction that converts several molecules of CO 2 ...
The underlying force driving these reactions is the Gibbs free energy of the reactants relative to the products. If donor and acceptor (the reactants) are of higher free energy than the reaction products, the electron transfer may occur spontaneously. The Gibbs free energy is the energy available ("free") to do work.