Search results
Results from the WOW.Com Content Network
The membrane is a lipid bilayer. The glycogen that is found within the glycosome is identical to glycogen found freely in the cytosol. [6] Glycosomes can be associated or attached to many different types of organelles. They have been found to be attached to the sarcoplasmic reticulum and its intermediate filaments.
Glycogen is found in the form of granules in the cytosol/cytoplasm in many cell types, and plays an important role in the glucose cycle. Glycogen forms an energy reserve that can be quickly mobilized to meet a sudden need for glucose, but one that is less compact than the energy reserves of triglycerides . As such it is also found as storage ...
Is expressed by renal tubular cells, liver cells and pancreatic beta cells. It is also present in the basolateral membrane of the small intestine epithelium. Bidirectionality is required in liver cells to uptake glucose for glycolysis and glycogenesis, and release of glucose during gluconeogenesis. In pancreatic beta cells, free flowing glucose ...
In humans, insulin is made by beta cells in the pancreas, fat is stored in adipose tissue cells, and glycogen is both stored and released as needed by liver cells. Regardless of insulin levels, no glucose is released to the blood from internal glycogen stores from muscle cells.
If the blood glucose level falls to dangerously low levels (as during very heavy exercise or lack of food for extended periods), the alpha cells of the pancreas release glucagon, a peptide hormone which travels through the blood to the liver, where it binds to glucagon receptors on the surface of liver cells and stimulates them to break down glycogen stored inside the cells into glucose (this ...
Glucagon is delivered directly to the liver, where it connects to the glucagon receptors on the membranes of the liver cells, signals the conversion of the glycogen already stored in the liver cells into glucose. This process is called glycogenolysis. Conversely, when the blood glucose levels are too high, the pancreas is signaled to release ...
In myocytes (muscle cells), glycogen degradation serves to provide an immediate source of glucose-6-phosphate for glycolysis, to provide energy for muscle contraction. Glucose-6-phosphate can not pass through the cell membrane, and is therefore used solely by the myocytes that produce it.
The SLC5A1 gene provides instructions for producing a sodium/glucose cotransporter protein called SGLT1. [1] This protein is found mainly in the intestinal tract and, to a lesser extent, in the kidneys, where it is involved in transporting glucose and the structurally similar galactose across cell membranes.