enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The generalization of the dot product formula to Riemannian manifolds is a defining property of a Riemannian connection, which differentiates a vector field to give a vector-valued 1-form. Cross product rule

  4. Gauss's method - Wikipedia

    en.wikipedia.org/wiki/Gauss's_method

    Calculate the squared scalar distance of the second observation, by taking the dot product of the position vector of the second observation: = where R 2 2 {\displaystyle {R_{2}}^{2}} is the squared distance of the second observation

  5. Vector multiplication - Wikipedia

    en.wikipedia.org/wiki/Vector_multiplication

    The cross product occurs frequently in the study of rotation, where it is used to calculate torque and angular momentum. It can also be used to calculate the Lorentz force exerted on a charged particle moving in a magnetic field. The dot product is used to determine the work done by a constant force.

  6. Cross-correlation - Wikipedia

    en.wikipedia.org/wiki/Cross-correlation

    This is also known as a sliding dot product or sliding inner-product. It is commonly used for searching a long signal for a shorter, known feature. It has applications in pattern recognition, single particle analysis, electron tomography, averaging, cryptanalysis, and neurophysiology.

  7. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The scalar projection is defined as [2] = ‖ ‖ ⁡ = ^ where the operator ⋅ denotes a dot product, ‖a‖ is the length of a, and θ is the angle between a and b. The scalar projection is equal in absolute value to the length of the vector projection, with a minus sign if the direction of the projection is opposite to the direction of b ...

  8. Geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Geometric_algebra

    In a geometric algebra for which the square of any nonzero vector is positive, the inner product of two vectors can be identified with the dot product of standard vector algebra. The exterior product of two vectors can be identified with the signed area enclosed by a parallelogram the sides of which are the vectors.

  9. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    The dot product is the trace of the outer product. [5] Unlike the dot product, the outer product is not commutative. Multiplication of a vector by the matrix can be written in terms of the inner product, using the relation () = , .