enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    A simplified version of the LLL factorization algorithm is as follows: calculate a complex (or p-adic) root α of the polynomial () to high precision, then use the Lenstra–Lenstra–Lovász lattice basis reduction algorithm to find an approximate linear relation between 1, α, α 2, α 3, . . . with integer coefficients, which might be an ...

  3. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    In mathematics and computer algebra the factorization of a polynomial consists of decomposing it into a product of irreducible factors.This decomposition is theoretically possible and is unique for polynomials with coefficients in any field, but rather strong restrictions on the field of the coefficients are needed to allow the computation of the factorization by means of an algorithm.

  4. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    q is an integer factor of the leading coefficient a n. The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is the special case of the rational root theorem when the leading coefficient is a n = 1.

  5. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    Every polynomial with rational coefficients, may be factorized, in a unique way, as the product of a rational number and a polynomial with integer coefficients, which is primitive (that is, the greatest common divisor of the coefficients is 1), and has a positive leading coefficient (coefficient of the term of the highest degree). For example:

  6. Berlekamp's algorithm - Wikipedia

    en.wikipedia.org/wiki/Berlekamp's_algorithm

    In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967.

  7. Sturm's theorem - Wikipedia

    en.wikipedia.org/wiki/Sturm's_theorem

    The theorem extends to unbounded intervals by defining the sign at +∞ of a polynomial as the sign of its leading coefficient (that is, the coefficient of the term of highest degree). At –∞ the sign of a polynomial is the sign of its leading coefficient for a polynomial of even degree, and the opposite sign for a polynomial of odd degree.

  8. Lindsey–Fox algorithm - Wikipedia

    en.wikipedia.org/wiki/Lindsey–Fox_algorithm

    The Lindsey–Fox algorithm, named after Pat Lindsey and Jim Fox, is a numerical algorithm for finding the roots or zeros of a high-degree polynomial with real coefficients over the complex field. It is particularly designed for random coefficients but also works well on polynomials with coefficients from samples of speech, seismic signals, and ...

  9. Coefficient - Wikipedia

    en.wikipedia.org/wiki/Coefficient

    The leading entry (sometimes leading coefficient [citation needed]) of a row in a matrix is the first nonzero entry in that row. So, for example, in the matrix ( 1 2 0 6 0 2 9 4 0 0 0 4 0 0 0 0 ) , {\displaystyle {\begin{pmatrix}1&2&0&6\\0&2&9&4\\0&0&0&4\\0&0&0&0\end{pmatrix}},} the leading coefficient of the first row is 1; that of the second ...