Search results
Results from the WOW.Com Content Network
The mRNA stem-loop structure forming at the ribosome binding site may control an initiation of translation. [4] [5] Stem-loop structures are also important in prokaryotic rho-independent transcription termination. The hairpin loop forms in an mRNA strand during transcription and causes the RNA polymerase to become dissociated from the DNA ...
Nucleic acid thermodynamics is the study of how temperature affects the nucleic acid structure of double-stranded DNA (dsDNA). The melting temperature (T m) is defined as the temperature at which half of the DNA strands are in the random coil or single-stranded (ssDNA) state. T m depends on the length of the DNA molecule and its specific ...
DNA structure and bases A-B-Z-DNA Side View. Tertiary structure refers to the locations of the atoms in three-dimensional space, taking into consideration geometrical and steric constraints. It is a higher order than the secondary structure, in which large-scale folding in a linear polymer occurs and the entire chain is folded into a specific 3 ...
The stability of i-motif DNA can be influenced by increasing ionic concentration. [34] The addition of Na has shown to increase the destabilization of the i-motif structure from the c-jun proto-oncogene at pH 4.8. A decrease in stability of i-motif corresponded with an increase in ionic concentration in a study of i-motif DNA from n-MYC. [35]
The resulting structure is a key building block of many RNA secondary structures. Cruciform DNA Cruciform DNA is a form of non-B DNA that requires at least a 6 nucleotide sequence of inverted repeats to form a structure consisting of a stem, branch point and loop in the shape of a cruciform, stabilized by negative DNA supercoiling. [3]
The collection of DNA molecules of various truncated lengths therefore informs the frequency of reaction at every base position, which reflects the structure profile along the RNA. This is traditionally assayed by running the DNA on a gel , and the intensity of bands inform the frequency of observing a truncation at each position.
Two important functions are the binding potential with ligands or proteins, and its ability to stabilize the whole tertiary structure of DNA or RNA. The strong structure can inhibit or modulate transcription and replication, such as in the telomeres of chromosomes and the UTR of mRNA. [18] The base identity is important towards ligand binding.
The chemical structure of DNA base-pairs . A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA and RNA.