enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The term Chebyshev's inequality may also refer to Markov's inequality, especially in the context of analysis. They are closely related, and some authors refer to Markov's inequality as "Chebyshev's First Inequality," and the similar one referred to on this page as "Chebyshev's Second Inequality."

  3. Coupon collector's problem - Wikipedia

    en.wikipedia.org/wiki/Coupon_collector's_problem

    In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...

  4. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    In fact, Chebyshev's proof works so long as the variance of the average of the first n values goes to zero as n goes to infinity. [15] As an example, assume that each random variable in the series follows a Gaussian distribution (normal distribution) with mean zero, but with variance equal to 2 n / log ⁡ ( n + 1 ) {\displaystyle 2n/\log(n+1 ...

  5. Chebyshev's theorem - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_theorem

    Chebyshev's sum inequality, about sums and products of decreasing sequences Chebyshev's equioscillation theorem , on the approximation of continuous functions with polynomials The statement that if the function π ( x ) ln ⁡ x / x {\textstyle \pi (x)\ln x/x} has a limit at infinity, then the limit is 1 (where π is the prime-counting function).

  6. Multidimensional Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_Chebyshev...

    In probability theory, the multidimensional Chebyshev's inequality [1] is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount.

  7. Consistent estimator - Wikipedia

    en.wikipedia.org/wiki/Consistent_estimator

    the most common choice for function h being either the absolute value (in which case it is known as Markov inequality), or the quadratic function (respectively Chebyshev's inequality). Another useful result is the continuous mapping theorem : if T n is consistent for θ and g (·) is a real-valued function continuous at point θ , then g ( T n ...

  8. Chebyshev's sum inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_sum_inequality

    Consider the sum = = = (). The two sequences are non-increasing, therefore a j − a k and b j − b k have the same sign for any j, k.Hence S ≥ 0.. Opening the brackets, we deduce:

  9. Chernoff bound - Wikipedia

    en.wikipedia.org/wiki/Chernoff_bound

    It is a sharper bound than the first- or second-moment-based tail bounds such as Markov's inequality or Chebyshev's inequality, which only yield power-law bounds on tail decay. However, when applied to sums the Chernoff bound requires the random variables to be independent, a condition that is not required by either Markov's inequality or ...