enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    Multilevel models are a subclass of hierarchical Bayesian models, which are general models with multiple levels of random variables and arbitrary relationships among the different variables. Multilevel analysis has been extended to include multilevel structural equation modeling, multilevel latent class modeling, and other more general models.

  3. Multilevel modeling for repeated measures - Wikipedia

    en.wikipedia.org/wiki/Multilevel_Modeling_for...

    In multilevel modeling, an overall change function (e.g. linear, quadratic, cubic etc.) is fitted to the whole sample and, just as in multilevel modeling for clustered data, the slope and intercept may be allowed to vary. For example, in a study looking at income growth with age, individuals might be assumed to show linear improvement over time.

  4. Multilevel regression with poststratification - Wikipedia

    en.wikipedia.org/wiki/Multilevel_regression_with...

    The multilevel regression is the use of a multilevel model to smooth noisy estimates in the cells with too little data by using overall or nearby averages. One application is estimating preferences in sub-regions (e.g., states, individual constituencies) based on individual-level survey data gathered at other levels of aggregation (e.g ...

  5. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Hierarchical linear models (or multilevel regression) organizes the data into a hierarchy of regressions, for example where A is regressed on B, and B is regressed on C. It is often used where the variables of interest have a natural hierarchical structure such as in educational statistics, where students are nested in classrooms, classrooms ...

  6. Multifidelity simulation - Wikipedia

    en.wikipedia.org/wiki/Multifidelity_simulation

    For example, LoFi data can be produced by models of a physical system that use approximations to simulate the system, rather than modeling the system in an exhaustive manner. [5] Moreover, in human-in-the-loop (HITL) situations the goal may be to predict the impact of technology on expert behavior within the real-world operational context.

  7. Marginal model - Wikipedia

    en.wikipedia.org/wiki/Marginal_model

    In a typical multilevel model, there are level 1 & 2 residuals (R and U variables). The two variables form a joint distribution for the response variable ().In a marginal model, we collapse over the level 1 & 2 residuals and thus marginalize (see also conditional probability) the joint distribution into a univariate normal distribution.

  8. Talk:Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Talk:Multilevel_model

    The paper is basically a tutorial in which school-effect (hierarchical) models and individual growth models, which are commonly used in multilevel research, are used as examples. Finally, Liao and Chuang (2004) present a multilevel analysis of customer service, spanning employees, managers, and customers from 25 restaurants – a truly ...

  9. Multilevel Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Multilevel_Monte_Carlo_method

    The goal of a multilevel Monte Carlo method is to approximate the expected value ⁡ [] of the random variable that is the output of a stochastic simulation.Suppose this random variable cannot be simulated exactly, but there is a sequence of approximations ,, …, with increasing accuracy, but also increasing cost, that converges to as .