enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Theorem of three moments - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_three_moments

    The moment M1, M2, and M3 be positive if they cause compression in the upper part of the beam. (sagging positive) The deflection downward positive. (Downward settlement positive) Let ABC is a continuous beam with support at A,B, and C. Then moment at A,B, and C are M1, M2, and M3, respectively.

  3. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    Macaulay's method (the double integration method) is a technique used in structural analysis to determine the deflection of Euler-Bernoulli beams.Use of Macaulay's technique is very convenient for cases of discontinuous and/or discrete loading.

  4. Conjugate beam method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_beam_method

    This beam has the same length as the real beam and has corresponding supports as listed above. In general, if the real support allows a slope, the conjugate support must develop shear; and if the real support allows a displacement, the conjugate support must develop a moment. The conjugate beam is loaded with the real beam's M/EI diagram.

  5. Flexibility method - Wikipedia

    en.wikipedia.org/wiki/Flexibility_method

    For example, consider a spring that has Q and q as, respectively, its force and deformation: The spring stiffness relation is Q = k q where k is the spring stiffness. Its flexibility relation is q = f Q, where f is the spring flexibility. Hence, f = 1/k. A typical member flexibility relation has the following general form:

  6. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...

  7. Moment distribution method - Wikipedia

    en.wikipedia.org/wiki/Moment_distribution_method

    The moment distribution method is a structural analysis method for statically indeterminate beams and frames developed by Hardy Cross. It was published in 1930 in an ASCE journal. [1] The method only accounts for flexural effects and ignores axial and shear effects.

  8. Moment-area theorem - Wikipedia

    en.wikipedia.org/wiki/Moment-Area_Theorem

    The following procedure provides a method that may be used to determine the displacement and slope at a point on the elastic curve of a beam using the moment-area theorem. Determine the reaction forces of a structure and draw the M/EI diagram of the structure.

  9. Slope deflection method - Wikipedia

    en.wikipedia.org/wiki/Slope_deflection_method

    The slope deflection method is a structural analysis method for beams and frames introduced in 1914 by George A. Maney. [1] The slope deflection method was widely used for more than a decade until the moment distribution method was developed. In the book, "The Theory and Practice of Modern Framed Structures", written by J.B Johnson, C.W. Bryan ...