enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Theorem of three moments - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_three_moments

    The moment M1, M2, and M3 be positive if they cause compression in the upper part of the beam. (sagging positive) The deflection downward positive. (Downward settlement positive) Let ABC is a continuous beam with support at A,B, and C. Then moment at A,B, and C are M1, M2, and M3, respectively.

  3. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...

  4. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    Simply supported beam with a single eccentric concentrated load. An illustration of the Macaulay method considers a simply supported beam with a single eccentric concentrated load as shown in the adjacent figure. The first step is to find . The reactions at the supports A and C are determined from the balance of forces and moments as

  5. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    For example, in the case of beam deflection problems it is wise to use a deformed shape that is analytically similar to the expected solution. A quartic may fit most of the easy problems of simply linked beams even if the order of the deformed solution may be lower.

  6. Flexibility method - Wikipedia

    en.wikipedia.org/wiki/Flexibility_method

    For example, consider a spring that has Q and q as, respectively, its force and deformation: The spring stiffness relation is Q = k q where k is the spring stiffness. Its flexibility relation is q = f Q, where f is the spring flexibility. Hence, f = 1/k. A typical member flexibility relation has the following general form:

  7. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    The two equations that describe the deformation of a Timoshenko beam have to be augmented with boundary conditions if they are to be solved. Four boundary conditions are needed for the problem to be well-posed. Typical boundary conditions are: Simply supported beams: The displacement is

  8. Beam (structure) - Wikipedia

    en.wikipedia.org/wiki/Beam_(structure)

    Historically a beam is a squared timber, but may also be made of metal, stone, or a combination of wood and metal [1] such as a flitch beam.Beams primarily carry vertical gravitational forces, but they are also used to carry horizontal loads such as those due to earthquake or wind, or in tension to resist rafter thrust or compression (collar beam).

  9. Generalised beam theory - Wikipedia

    en.wikipedia.org/wiki/Generalised_beam_theory

    In structural engineering and mechanical engineering, generalised beam theory (GBT) is a one-dimensional theory used to mathematically model how beams bend and twist under various loads. It is a generalization of classical Euler–Bernoulli beam theory that approximates a beam as an assembly of thin-walled plates that are constrained to deform ...