Search results
Results from the WOW.Com Content Network
In mathematical logic, a sentence (or closed formula) [1] of a predicate logic is a Boolean-valued well-formed formula with no free variables.A sentence can be viewed as expressing a proposition, something that must be true or false.
In mathematics, an expression is a written arrangement of symbols following the context-dependent, syntactic conventions of mathematical notation. Symbols can denote numbers , variables , operations , and functions . [ 1 ]
In mathematics education, a number sentence is an equation or inequality expressed using numbers and mathematical symbols. The term is used in primary level mathematics teaching in the US, [ 1 ] Canada, UK, [ 2 ] Australia, New Zealand [ 3 ] and South Africa.
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...
For example, algebraic expressions can only have constants that are themselves algebraic, and finite sums and products in algebraic expressions can only have algebraic arguments. This template expands to a table. For an alternative template that expands to a {}, see {{Mathematical operations
Consider the formal sentence . For some natural number , =.. This is a single statement using existential quantification. It is roughly analogous to the informal sentence "Either =, or =, or =, or... and so on," but more precise, because it doesn't need us to infer the meaning of the phrase "and so on."
In mathematics, an algebraic expression is an expression built up from constants (usually, algebraic numbers) variables, and the basic algebraic operations: addition (+), subtraction (-), multiplication (×), division (÷), whole number powers, and roots (fractional powers).
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...